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Abstract

In this note, we deal with the detectability problem for unambiguous weighted
automata (UWAs). The problem is to determine if, after a finite number of
observations, the set of possible states is reduced to a singleton. Four types of
detectabilities, namely, strong detectability, detectability, strong periodic detectability,
and periodic detectability are defined in terms of different requirements for current state
estimation. We first construct a deterministic finite state automaton (called observer)
over a weighted alphabet and prove that it can be used as the current-state estimator
of the studied UWA. Finally, necessary and sufficient conditions based on the observer
are proposed to verify detectabilities of a UWA.
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1 INTRODUCTION

State estimation is a fundamental problem in discrete event systems (DESs), and it has
been extensively studied in the framework of automata, e.g., [1, 2] and Petri nets (PNs),
e.g., [3, 4, 5]. State estimation aims at accurately characterizing the possible states by
observing system’s behaviour, i.e., the output information obtained during the evolution
of the system. State estimation plays an important role in some applications of DES, for
instance, the verification of opacity, e.g., [6, 7], and fault diagnosis, e.g., [8, 9].

Recently, the problem of state estimation has been investigated in terms of detectability
for non-probabilistic DES, e.g., [10, 11, 12], based on the construction of the observer
automaton, and for probabilistic DES, e.g., [13, 14, 15], where the asymptotic behaviour is
studied. Shu et al. [11] formulated the current-state estimation problem as detectability for
non-deterministic finite state automata (NFAs). Four types of detectabilities, i.e., strong
detectability, detectability, strong periodic detectability, periodic detectability, are defined
to characterize different properties of current state estimation. An observer is constructed
as to derive necessary and sufficient conditions for checking the detectabilities.

Note that classical automata and place/transition nets, where no quantitative
information is associated with the occurrence of events, can only describe the logical
behavior DESs. However, in various real-world systems, some quantitative information may
be associated to state transitions to better characterize the system’s evolution. Weighted
automata (WAs) represent a well studied class of DES models [16], where transitions carry
weights belonging to a semiring. The weight associated with a transition can model, e.g.,
the cost, the energy, the time needed or the probability associated with the execution of
the transition. In [17, 18], it is shown that safe timed PNs under the preselection policy can
be modeled by max-plus automata (WAs over the max-plus semiring). In [19], it is shown
that bounded timed PNs under race policy can be represented by deterministic max-plus
automata.

In this work, we present a formal approach to verify the detectability property for
a restricted but important class of WAs, i.e., unambiguous weighted automata (UWAs),
where no two or more paths leading from an initial state to the same state are labeled by
the same string. Due to the influence of transition weights, the detectability properties
of a UWA can be different from those of its underlying logical automaton, as it will be
shown in Example 7. Note that many other fundamental problems that have been well
solved for NFAs are still open or known to be undecidable in the framework of general
WAs [20]. For example, the problem of deciding whether a given nondeterministic WA
can be determinized is open. Besides, inequalities between behaviors (corresponding to the
language containment problem in logical automata) for some classes of WAs, such as max-
plus automata and min-plus automata, are undecidable. In the literature, such as [21, 22],
the unambiguity is usually assumed to make the studied problem decidable. Similarly,
in this paper, the unambiguity property is assumed to solve the detectability verification
problem.
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The main contributions of this paper are as follows. 1) We first define the concept of
consistent states for an infinite sequence representing a trajectory of the system. Then,
inspired by [11], we define four types of detectabilities for WAs. 2) A novel algorithm is
introduced to construct a finite state automaton (called observer) for a given UWA, and
we prove that this observer can be used for the current-state estimation of the studied
system. Note that this algorithm is first presented in this paper, and is adapted to deal
with the problem of initial-state detectability and initial-state opacity for WAs in [23]. 3)
Necessary and sufficient conditions are derived from the constructed observer for verifying
the four detectabilities properties of UWAs.

This paper is organized as follows. In Section 2, some basics of WAs are recalled.
Section 3 gives the definitions of four types of detectabilities of WAs. In Section 4, theorems
(necessary and sufficient conditions) based on the construction of an observer are introduced
for checking the detectabilities of a UWA. Finally, conclusions and future work are drawn
in Section 5.

2 BACKGROUND ON WEIGHTED AUTOMATA

In this section we recall some basics of WAs [24].

Definition 1. A semiring is a quintuple S = (D,⊕,⊗, ε, e) composed by a set D, two
binary operations ⊕ and ⊗ on D, and two constant values ε, e ∈ D satisfying the following
four axioms:

• (D,⊕) is a commutative monoid with zero element ε, i.e., a⊕ b = b⊕ a, (a⊕ b)⊕ c =
a⊕ (b⊕ c), and ε⊕ a = a⊕ ε = a hold for any a, b, c ∈ D;

• (D,⊗) is a monoid with identity element e, i.e., (a⊗b)⊗c = a⊗(b⊗c), ε⊗a = a⊗ε = ε,
and e⊗ a = a⊗ e = a hold for any a, b, c ∈ D;

• the distributive laws (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b)
hold for any a, b, c ∈ D.

Example 1. A typical semiring is the set of nonnegative integers equipped with the
usual addition and multiplication, i.e., S = (N,+,×, 0, 1). Other important semirings
include [24]: Tropical semiring (R ∪ {+∞} ,min,+,+∞, 0), max-plus semiring (R ∪
{−∞} ,max,+,−∞, 0) and probability semiring ([0, 1] ,+,×, 0, 1).

The set of matrices with m rows and n columns over S = (D,⊕,⊗, ε, e) is denoted by
S
m×n. For matrices A,B ∈ S

m×n and C ∈ S
n×m, the matrix sum and product are defined

in the following way:
[A⊕B]ij , Aij ⊕Bij;

[A⊗ C]ij ,
n

⊕

k=1

(Aik ⊗ Ckj) .
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Let E be an alphabet, i.e., a non-empty set of labels. A string defined on E is a finite
sequence of labels in E. E∗ represents the set of all the finite strings over alphabet E
including the empty string, denoted by λ in this paper.

Definition 2. A WA over a semiring S = (D,⊕,⊗, ε, e) is a tuple G = (Q,E,α, µ) where

• Q and E are respectively a non-empty finite set of states and an alphabet;

• α ∈ S
1×|Q| specifies the initial weights. A state q ∈ Q is said to be an initial state

(belongs to Qi ⊆ Q) iff αq 6= ε, and αq is the corresponding initial weight;

• µ: E → S
|Q|×|Q| is a morphism representing the state transitions given by the family

of matrices µ (a) ∈ S
|Q|×|Q|, a ∈ E. For any string ω = e1 · · · ek ∈ E∗, we have

µ(ω) = µ(e1)⊗ µ(e2) · · · ⊗ µ(ek).

We assume that the states of G = (Q,E,α, µ) are well ordered by positive integers, i.e.,
Q = {1, 2, · · · , |Q|}, and with a slight abuse of notation, we denote αq the qth element of
α, and µ(a)qq′ the element in the qth row and q′th column of matrix µ(a).

Definition 3. A WA G = (Q,E,α, µ) over a semiring S = (D,⊕,⊗, ε, e) can be
equivalently defined by G = (Q,E, t,Qi, ̺), where t : Q × E × Q → D is the transition
function with t(q, a, q′) , µ(a)qq′ for q, q

′ ∈ Q, Qi , {q ∈ Q | αq 6= ε} is the set of initial
states, and ̺ : Qi → D is the function of initial weights ̺(q) , αq for q ∈ Qi.

Definition 4. Given a WA G, a path of length k is defined as a sequence of transitions π =
(q0, e1, q1) (q1, e2, q2) · · · (qk−1, ek, qk), where qi ∈ Q, i = 0, . . . , k, ei ∈ E and µ(ei)qi−1qi 6= ε
for i = 1, . . . , k.

Path π is said to be labeled by e1e2 · · · ek, and π is a circuit if q0 coincides with qk. Let
p

ω
 q represents the set of paths labeled by string ω ∈ E∗ from state p leading to q. For

ω equals the empty string λ, p
ω
 q is the empty set. For P,R ⊆ Q, we denote P

ω
 R the

union of p
ω
 q for all p ∈ P and q ∈ R.

Definition 5. Given an arbitrary path π = (q0, e1, q1) (q1, e2, q2) · · · (qk−1, ek, qk) of a WA
G, we define its weight, denoted by W(π), as

W(π) =















αq0 ⊗
⊗

i=1,...,k

µ(ei)qi−1qi , if q0 ∈ Qi;

⊗

i=1,...,k

µ(ei)qi−1qi , otherwise.

Definition 6. Given a WA G, we define the state vector x(ω) ∈ S
1×|Q|, ω ∈ E∗, to describe

its dynamic evolution as

x(ω) =

{

α, if ω = λ;
α⊗ µ(ω), otherwise.
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It can be verified that x(ω)q corresponds to the sum ⊕ of weights of paths labeled by
ω from an initial state to q:

x(ω)q =
⊕

π∈Qi
ω
 q

W(π) =
⊕

p∈Qi

αp ⊗ µ(w)pq.

We interpret x(ω)q as the weight to reach state q according to ω. Depending on the
interpretation, this weight can represent an amount of time, resources, or a cost.

Definition 7. Given an arbitrary path π = (q0, e1, q1) (q1, e2, q2) · · · (qk−1, ek, qk) of a WA
G with q0 ∈ Qi, we define the weighted sequence σ(π) ∈ (E × D)∗ generated by π as:
σ(π) = (e1, τ1)(e2, τ2) · · · (ek, τk), where τj is defined by τj = x(e1 · · · ej)qj , j = 1, . . . , k.

Weighted sequence σ(π) specifies a sequence of labels and their occurrence weights. We

use q0
σ(π)
 qk to represent that weighted sequence σ(π) leads from q0 to qk.

Definition 8. A WA G is said to be unambiguous if ∀q ∈ Q, ∀ω ∈ E∗, |Qi
ω
 {q} |≤ 1.

In simple words, the unambiguity requires that for any state q of G and any string ω
in E∗, there is at most one path labeled by ω leading to q from an initial state.

Remark 1. For a WA G = (Q,E,α, µ) where all states are initial states, i.e., Qi = Q, G
is unambiguous iff every state in G has no two or more input transitions labeled by the
same symbol. On the one hand, suppose (q′, a, q) and (q′′, a, q) with q′, q′′ ∈ Q, q′ 6= q′′,
and a ∈ E, are two input transitions of state q in G. Since q′ and q′′ are initial states,
then there exists a string ω = a such that |Qi

ω
 {q} |> 1, i.e., G is not unambiguous. On

the other hand, assume G is not unambiguous, i.e., |Qi
ω
 {q} |> 1. Let a be the last label

of ω. Then we know that there is more than one input transition of q that is labeled by
symbol a.

Example 2. The automaton in Fig. 1 is a WA G with Q = {1, 2, 3, 4}, alphabet E =
{u, a, b, c}, transitions µ(u)1,2 = 0.2, µ(b)2,2 = 0.3, µ(b)2,1 = 0.2, µ(c)2,3 = 0.4, µ(b)3,3 =
0.3, µ(a)3,4 = 0.3, µ(a)4,1 = 0.1, µ(u)4,3 = 0.2, α = (e, e, e, e). Note that all the non-listed
coefficients in µ(u), µ(a), µ(b), and µ(c) are equal to ε, meaning that they do not model
possible transitions in the automaton.

Consider an arbitrary word ω = e1 · · · ek ∈ E∗ and a state q ∈ Q in UWA G. There
exists at most one path labeled by ω from an initial state p ∈ Qi to q, and

x(ω)q =







αp ⊗ µ(ω)pq, if q is reachable from p

according to ω (i.e.|p
ω
 q|= 1);

ε, otherwise.

As a result, the weighted sequence generated by path π = (q0, e1, q1) (q1, e2, q2) · · · (qk−1, ek, qk)
of a UWA (see Def. 7) can be simplified into σ(π) = (e1, τ1)(e2, τ2) · · · (ek, τk) where
τ1 = αq0 ⊗ µ(e1)q0q1 , τi = τi−1 ⊗ µ(ei)qi−1qi for i = 2, . . . , k.
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Figure 1: Unambiguous weighted automaton G.

Example 3. Consider path π = (1, u, 2)(2, b, 2) in UWA G depicted in Fig. 1. We have
σ(π) = (u, α1 ⊗ µ(u)1,2)(b, α1 ⊗ µ(u)1,2 ⊗ µ(b)2,2) = (u, e⊗ 0.2)(b, e ⊗ 0.2⊗ 0.3).

Definition 9. Given a WA G, we define the generated weighted language L(G) of G as:

L(G) = {σ ∈ (E ×D)∗ | ∃q ∈ Q,

∃s ∈ E∗, ∃π ∈ Qi
s
 {q} : σ(π) = σ}.

Definition 10. Given an alphabet E = Eo∪Euo, the projection operator on Eo is denoted
by P : E∗ → E∗

o and is defined as: P (λ) = λ; for each a ∈ E, s ∈ E∗ P (sa) = P (s)a, if
a ∈ Eo, otherwise P (sa) = P (s).

Now the projection operator P : E∗ → E∗
o is extended to weighted sequences P :

(E ×D)∗ → (Eo ×D)∗. For any σ ∈ (E ×D)∗, P (σ) is the weighted sequence obtained
from σ by removing all pairs corresponding to unobservable events.

In the rest, P (L(G)) represents the set of observable weighted sequences for WA G,
i.e., the set of all possible observations that can be observed by an external agent. We
emphasize that the language generated by a WA and its projection are originally defined
in this paper. Let σ1 and σ2 be two weighted sequences, we denote by Ef (σ1) the last event
in σ1, and by σ1 · σ2 (or simply σ1σ2) the concatenation of σ1 and σ2.

3 PROBLEM STATEMENT

In this paper we restrict our attention to a WA G with identity initial weights1. The label
set E is partitioned into two disjoint parts: the observable part Eo and the unobservable
part Euo. Considering that the firing of unobservable labels cannot be detected by an

1The coefficients in α different from ε are all equal to e. This assumption is without loss of generality since
an automaton with non-identity initial weights can always be transformed into an equivalent automaton
with identity initial weights by adding new states and by considering these weights as state transitions
durations associated to new fictive initial labels.
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external agent, we assume that all unobservable labels are represented by symbol u, i.e.,
E = Eo∪{u}. We also make the following assumptions on the studied weighted automaton
G:

(A1). G is unambiguous (see Def. 8).

(A2). G is deadlock free, that is, for any state, there exists at least one output transition:
(∀q ∈ Q)(∃a ∈ E, q′ ∈ Q)µ(a)qq′ 6= ε.

(A3). There is no circuit labeled only by unobservable labels in G.

Assumption (A1) requires that for any state q of G and any string ω ∈ E∗, there is
at most one path labeled by ω leading to q from the initial states. However, Assumption
(A1) does not imply that an observed weighted sequence can be generated by a single
path. For example, assuming that ⊗ is the usual addition +, the WA G in Fig. 1 is such
that σo = (b, 0.5)(b, 0.8) can be generated by two paths, i.e., π1 = (1, u, 2)(2, b, 2)(2, b, 2)
and π2 = (4, u, 3)(3, b, 3)(3, b, 3). In addition, Assumption (A2) implies that the length of
the generated weighted sequence becomes infinite as the system evolves indefinitely. By
Assumption (A3), for an infinite sequence, the length of its projection is also infinite.

3.1 Consistent State

In a logical DES, a trajectory of the system consists in an infinite sequence of labels that
the system may generate. The set of all possible trajectories of the system is called ω-
language [25]. Similarly, given a WA G, a trajectory consists in an infinite sequence of
(label, weight) pairs that G may generate. The set of all possible trajectories of G defines
the ω-language Lω(G), i.e., the set of infinite weighted sequences generated by G.

Definition 11. Given an observed weighted sequence σo ∈ P (L(G)), the set of all
σo−consistent states is defined as

C(σo) = {q ∈ Q | ∃σ ∈ L(G),∃q0 ∈ Qi :

q0
σ
 q, P (σ) = σo}.

(1)

In simple words, a state q is consistent with observation σo, if there exists a generated
weighted sequence σ leading to state q such that the projection of σ coincides with σo.

Example 4. Consider again the WA G in Fig. 1 with ⊗ = +, Eo = {a, b, c} and Euo = {u}.
Given σo = (b, 0.5)(b, 0.8), it can be verified that the set of consistent states is C(σo) =
{2, 3}. In fact, two different paths from an initial state have weighted sequences that are
consistent with σo, namely, π1 = (1, u, 2)(2, b, 2)(2, b, 2) and π2 = (4, u, 3)(3, b, 3)(3, b, 3).

Considering π1, we have σ1 = σ(π1) = (u, 0.2)(b, 0.5)(b, 0.8) and 1
σ1

 2. Therefore, state 2
is consistent with σo. Similarly, state 3 is a consistent state by considering π2.
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3.2 Detectability of Weighted Automata

In this subsection, we extend the detectability problem defined for logical DES modeled by
classical automata in [11] to WAs framework. For an arbitrary finite or infinite sequence
σ, we denote Pref(σ) the set of all its prefixes.

Definition 12 (Strong Detectability). A WA G is strongly detectable with respect to a
projection P if one can determine, after a finite number of pair observations, the current
state and subsequent states of the automaton for all trajectories of the automaton. That
is,

(∃n ∈ N)(∀σ ∈ Lω(G))(∀σ′ ∈ Pref(σ))

|P (σ′)|> n ⇒ |C(P (σ′))|= 1.

Definition 13 (Detectability). A WA G is detectable with respect to a projection P if one
can determine, after a finite number of pair observations, the current state and subsequent
states of the automaton for some trajectories of the automaton. That is,

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pref(σ))

|P (σ′)|> n ⇒ |C(P (σ′))|= 1.

Definition 14 (Strong Periodic Detectability). A WA G is strongly periodically detectable
with respect to a projection P if one can periodically determine the current state of the
system for all trajectories of the automaton. That is,

(∃n ∈ N)(∀σ ∈ Lω(G))(∀σ′ ∈ Pref(σ))

(∃σ′′ ∈ (E ×D)∗)σ′σ′′ ∈ Pref(σ)

∧|P (σ′′)|< n ∧ |C(P (σ′σ′′))|= 1.

Definition 15 (Periodic Detectability). A WA G is periodically detectable with respect
to a projection P if one can periodically determine the current state of the system for some
trajectories of the automaton. That is,

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pref(σ))

(∃σ′′ ∈ (E ×D)∗)σ′σ′′ ∈ Pref(σ)

∧|P (σ′′)|< n ∧ |C(P (σ′σ′′))|= 1.

4 DETECTABILITY FOR UNAMBIGUOUS WEIGHTED

AUTOMATA

In this section, inspired by the work in [11], an observer is constructed to derive necessary
and sufficient conditions for verifying four detectabilities of a UWA.
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4.1 Construction of Observer

In this subsection, we first construct an observer, denoted by Gobs, for a UWA G. In detail,
the observer Gobs is a finite state automaton (DFA) over a weighted alphabet Eobs ⊂ Eo×D,
which is built so that it has the following structural properties: Gobs has only one initial
state, and from a given state no two transitions of Gobs are labeled by the same weighted
label (a, ta) ∈ Eobs. That is, Gobs is a deterministic finite state automaton (DFA) over
weighted alphabet Eobs. Let us stress, however, that from a state in Gobs there may exist
several output transitions labeled by the same label a ∈ Eo but with different weights ta.
In this case, the external agent can distinguish the transitions from the different associated
weights. Then, we prove that Gobs can be used to estimate the consistent states for any
infinite or finite weighted sequence observed from system G.

For any subset y ⊆ Q, its unobservable reach is denoted by UR(y) and is defined as

UR(y) = {q′ ∈ Q | ∃q ∈ y,

∃i ∈ {0, 1, . . . , |Q|−1} : µ(ui)qq′ 6= ε}.

Algorithm 1 details the construction of such an observer Gobs for a given UWA G. This
algorithm is first presented here and it has been adapted to solve different problems in the
recent contribution [23].

Step 1 of Algorithm 1 calculates a NFA Go over weighted alphabet Eobs. The state
set Qo of automaton Go is composed of the initial states of G and the states in G that
have at least one input transition marked by an observable label. Besides, the duration
of a sequence of unobservable labels along a path is added to the next observable label to
capture the following phenomenon: during the evolution of a system, we do not observe the
occurrence of unobservable labels, but we keep track of the elapsed time corresponding to
the occurrence of unobservable labels in the weighted alphabet Eobs. Step 2 computes DFA
G′

obs by applying the determinization process to NFA Go. Step 3 constructs the observer
of G from G′

obs by replacing each state q′obs in G′
obs with pair (q′obs, UR(q′obs)).

Remark 2. By Algorithm 1, |Qobs| is bounded by 2|Q| − 1, and |Eobs| is bounded by
|Q|3×|Eo|. More precisely, because of Assumption (A3), the length of path labeled by
unobservable events only is at most |Q|−1. Because of the unambiguity assumption, for
each state q ∈ Q, each observable event a ∈ Eo, and each integer i ∈ {0, 1, 2, . . . , |Q|−1},
there exist at most |Q| paths labeled by uia starting from state q. Since there are |Q|
states in G, |Q| elements in i = {0, 1, 2, . . . , |Q− 1|}, and |Eo| observable events, |Eobs| is
bounded by |Q|3 × |Eo|. Based on the above discussion, from Theorems 1–4 it follows that
the verification of the four detectabilities of UWA G has exponential complexity in |Q|.

2We denote by the Ac(G) the automaton obtained by removing all the states that are not accessible as
well as transitions associated with such states in G.
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Algorithm 1 Construction of the observer of a UWA

Input: A UWA G = (Q,E, t,Qi, ̺).
Output: Observer Gobs = (Qobs, Eobs, δobs, qi,obs) of G.
1: Construct an NFA Go = (Qo, Eobs, δo, Q

o
i ) from G as follows:

• Qo
i = Qi;

• Qo = Q1 ∪ Qi, where Q1 =
{

q ∈ Q | ∃q′ ∈ Q,∃a ∈ Eo : µ(a)q′q 6= ε
}

is the set of
states in G that have at least one input transition marked by an observable label;

• Eobs consists of all weighted labels (a, τ) ∈ Eo × D for which ∃q ∈ Qo, ∃q
′ ∈ Q,

∃i ∈ {0, 1, . . . , |Q|−1}, s.t. µ(uia)qq′ = τ ;

• δo ⊆ Qo × Eobs × Qo is the set of state transitions. (q, (a, τ), q′) ∈ δo iff ∃i ∈
{0, 1, . . . , |Q|−1}, s.t. µ(uia)qq′ = τ

2: Calculate a DFA G′
obs through the determinization of NFA Go as follows:

• q′i,obs = Qo
i ;

• δ′obs : 2
Qo ×Eobs → 2Qo is the state transition function. δ′obs(q

′
obs, (a, τ)) is defined

as:
δ′obs(q

′
obs, (a, τ)) = {q′ ∈ Qo | ∃q ∈ q′obs :

q′ ∈ δo(q, (a, τ))}.

• Let G′
obs = (Q′

obs, Eobs, δ
′
obs, q

′
i,obs) = Ac(2Qo , Eobs, δ

′
obs, q

′
i,obs)

2.

3: Observer Gobs is obtained by replacing each state q′obs in G′
obs by pair (q′obs, UR(q′obs))

as follows.

• qi,obs = (q′i,obs, UR(q′i,obs));

• Qobs = {(q′obs, UR(q′obs)) | ∃q
′
obs ∈ Q′

obs};

• δobs : Qobs × Eobs → Qobs is the state transition function.
δobs((q

′
obs, UR(q′obs)), (a, τ)) is defined as: δobs((q

′
obs, UR(q′obs)), (a, τ)) =

(δ′obs(q
′
obs, (a, τ)), UR(δ′obs(q

′
obs, (a, τ))));

• Let Gobs = (Qobs, Eobs, δobs, qi,obs).

Example 5. Consider the UWA G in Fig. 1 and ⊗ = +. After applying Algorithm 1, we
obtain NFA Go, DFA G′

obs, and observer Gobs shown in Figs. 2, 3 and 4, respectively.

Let E∗
obs be the set of strings over weighted alphabet Eobs including (λ, e) corresponding

to empty string λ and the identity weight value. The language generated by the observer
Gobs = (Qobs, Eobs, δobs, qi,obs) is defined as:

L(Gobs) = {ω ∈ E∗
obs | ∃qobs ∈ Qobs :

δobs(qi,obs, ω) = qobs}.
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Figure 2: Diagram of NFA Go of G in Fig. 1.

Figure 3: DFA G′
obs of G in Fig. 1.

It should be noticed that the language generated by Gobs is a subset of E∗
obs, i.e.,

L(Gobs) ⊆ E∗
obs. While the language generated by G is a subset of (E ×D)∗, i.e., L(G) ⊆

(E ×D)∗. For any observed weighted sequence σo = (a1, τ1)(a2, τ2) · · · (an, τn) ∈ P (L(G)),
we define σelem

o = (a1, τ1)(a2, τ2⊗
−1τ1) · · · (an, τn⊗

−1τn−1) to denote its equivalent notation
in E∗

obs, where τk ⊗
−1 τk−1 represents the weight3 for the elementary transition according

to ak, k = 2, 3, . . . , n. We denote P (L(G))elem the equivalent notation of P (L(G)), that is,

P (L(G))elem = {σ ∈ (Eo ×D)∗ | ∃σo ∈ P (L(G)) :

σelem
o = σ}.

The following lemma states the equivalence between the observed language generated
by G and the language generated by observer Gobs. It follows immediately from the

3Note that τk⊗
−1

τk−1 is defined as the value x ∈ D such that x⊗τk−1 = τk, with τk and τk−1 ∈ D\{ε}.
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({1,2,3,4},{1,2,3,4})

({1},{1,2}) ({2,3},{2,3}) ({3},{3}) ({4},{3,4})

({2},{2})

Figure 4: Observer Gobs of G in Fig. 1.

construction process of observer Gobs presented in Algorithm 1. Hence the proof here
is omitted.

Lemma 1. The projection of language L(Gobs) generated by Gobs coincides with
P (L(G))elem, that is, L(Gobs) = P (L(G))elem.

For any pair (y, y′) of state sets, where y, y′ ⊆ Q, we use Proj1((y, y
′)) to represent

its first element, i.e., Proj1((y, y
′)) = y. Similarly, Proj2((y, y

′)) = y′ denotes the second
element of this pair.

Proposition 1. For any σo = (a1, τ1)(a2, τ2) · · · (ak, τk) ∈ P (L(G)), the set of consistent
states is given by C(σo) = Proj2(δobs(qi,obs, σo

elem)) = Proj2(δobs(qi,obs, (a1, τ1)(a2, τ2 ⊗
−1

τ1) · · · (ak, τk ⊗
−1 τk−1))), where qi,obs and δobs are the initial state and transition function

of observer Gobs.

Proof. For a non-empty sequence σo ∈ P (L(G)), we first define C ′(σo) as follows.

C ′(σo) = {q ∈ Q | ∃σ ∈ L(G),∃q0 ∈ Qi :

q0
σ
 q, P (σ) = σo, Ef (σ) = Ef (σo)}.

(2)

In simple words, C ′(σo) consists of all those states q such that there exists a generated
weighted sequence σ ending with the last label in σo leading to q, and the projection of σ
coincides with σo. Note that for empty sequence (λ, e), we define C ′((λ, e)) = Qi. Then we
prove that for any σo ∈ P (L(G)), C ′(σo) = δ′obs(q

′
i,obs, σo

elem) holds, where q′i,obs and δ′obs
are the initial state and transition function of G′

obs defined in Step 2 of Algorithm 1. This
can be done by induction on the length of the observed weighted sequence.
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(Base step.) From Step 2 of Algorithm 1, we know that q′i,obs = Qi, which coincides
with C ′(λ, e).

(Inductive step.) Let σo = (a1, τ1)(a2, τ2) · · · (an, τn) ∈ P (L(G)) be an observed
weighted sequence. Assume that C ′(σo) = δ′obs(q

′
i,obs, σ

elem
o ) ∈ Q′

obs. We need to
prove that if a new pair (a, τ) is observed in continuation of σo, then C ′ (σo · (a, τ)) =
δ′obs(C

′(σo), (a, τ ⊗−1 τn)).
According to Algorithm 1, we have

δ′obs(C
′(σo), (a, τ ⊗−1 τn)) = {q ∈ Q | ∃q′ ∈ C ′(σo),

∃i ∈ {0, 1, . . . , |Q|−1} : µ(uia)q′q = τ ⊗−1 τn}.

That is, δ′obs(C
′(σo), (a, τ ⊗

−1 τn)) consists of all states that can be reached from a state in
C ′(σo) via a path labeled by uia, i ∈ {0, 1, . . . , | Q | −1}, and the weight associated with
the path is equal to τ ⊗−1 τn. Besides, from Eq. (2), we know that C ′(σo) contains all
states that can be reached by some generated weighted sequences ending with the last label
in σo, and the projection of these generated weighted sequences is equal to σo. Therefore,
δ′obs(C

′(σo), (a, τ⊗
−1τn)) consists of all states q that can be reached by a weighted sequence

σ from an initial state such that Ef (σ) = Ef (σo · (a, τ)) = a and P (σ) = σo · (a, τ).
This coincides with the definition of C ′(σo · (a, τ)). That is, δ′obs(C

′(σo), (a, τ ⊗−1 τn)) =
C ′ (σo · (a, τ)). Therefore, for any σo ∈ P (L(G)), C ′(σo) = δ′obs(q

′
i,obs, σo

elem) holds.
By comparing Eqs. (1) and (2), we know that C(σo) = UR(C ′(σo)). Besides,

according to Algorithm 1, we have Proj2(δobs(qi,obs, σo
elem)) = UR(C ′(σo)). Hence

C(σo) = Proj2(δobs(qi,obs, σo
elem)).

4.2 Verification of Detectabilities

This subsection derives necessary and sufficient conditions from observer Gobs to verify
detectabilities of a UWA G. Special attention must be paid to states belonging to
elementary circuits because the trajectories of observer Gobs = (Qobs, Eobs, δobs, qi,obs) can
visit these states indefinitely. We denote by Sci the set of all elementary circuits of Gobs:

Sci = {(qobs, s) ∈ Qobs × E∗
obs | δobs (qobs, s) = qobs∧

|s|≥ 1 ∧ (∀s′ ∈ Pref(s) s.t. s′ 6= s : δobs(qobs, s
′) 6= qobs)}.

Definition 16. A state qobs ∈ Qobs — which by definition is a pair of subsets of Q
— is said to be singleton if |Proj2(qobs)|= 1, where Proj2(qobs) is the second element

of qobs. We denote by Qsingle
obs the set of all singleton states in Gobs, i.e., Qsingle

obs =
{qobs ∈ Qobs | |Proj2(qobs)|= 1} .

Theorem 1 (Criterion for Checking Strong Detectability). A UWA G is strongly
detectable with respect to projection P iff any state reachable from any elementary circuit
in observer Gobs belongs to Qsingle

obs , that is: (∀(qobs, s) ∈ Sci)(∀q
′ ∈ Qobs s.t. ∃ω ∈

E∗
obs, δobs(qobs, ω) = q′)q′ ∈ Qsingle

obs .
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Proof. (If) Assume that G is not strongly detectable with respect to projection P , namely,

(∀n ∈ N)(∃σ ∈ Lω(G))(∃σ′ ∈ Pref(σ))

|P (σ′)|> n ∧ |C(P (σ′))|6= 1.

Let n = |Qobs|. Consider σ, σ′ such that σ′ ∈ Pref(σ), |P (σ′)|> n and |C(P (σ′))|6=
1. Since |P (σ′)|> n = |Qobs|, the sequence P (σ′)elem ∈ E∗

obs must visit at least one
elementary circuit (qobs, s) ∈ Sci in Gobs. Let v ∈ E∗

obs such that δobs(qi,obs, v) = qobs and

ω ∈ E∗
obs such that P (σ′)elem = vω. By Proposition 1, we have δobs(qobs, ω) = C(P (σ′)).

By assumption |C(P (σ′))|6= 1, we know that δobs(qobs, ω) /∈ Qsingle
obs . Therefore, we can

claim that (∃(qobs, s) ∈ Sci)(∃q
′ ∈ Qobs s.t. ∃ω ∈ E∗

obs, δobs(qobs, ω) = q′)q′ /∈ Qsingle
obs .

(Only If) Assume (∃(qobs, s) ∈ Sci)(∃q
′ ∈ Qobs s.t. ∃ω ∈ E∗

obs, δobs(qobs, ω) = q′)q′ /∈

Qsingle
obs . Let v ∈ E∗

obs such that δobs(qi,obs, v) = qobs. By assumption δobs(qobs, ω) /∈ Qsingle
obs ,

we have δobs(qi,obs, νs
jω) /∈ Qsingle

obs for j ∈ N. Define σ′ such that P (σ′)elem = vsjω, by
Proposition 1 and Lemma 1, we have C(P (σ′)) 6= 1. Since j can be any arbitrary integer,
we can conclude that

(∀n ∈ N)(∃σ ∈ Lω(G))(∃σ′ ∈ Pref(σ))

|P (σ′)|> n ∧ |C(P (σ′))|6= 1.

That is, UWA G is not strongly detectable.

Theorem 2 (Criterion for Checking Detectability). A UWA G is detectable with respect to
projection P iff there is at least one elementary circuit composed of states which all belong
to Qsingle

obs in observer Gobs, that is: (∃(qobs, s) ∈ Sci)(∀ω ∈ Pref(s))δobs(qobs, ω) ∈ Qsingle
obs .

Proof. (If) We assume that (∃(qobs, s) ∈ Sci)(∀ω ∈ Pref(s))δobs(qobs, ω) ∈ Qsingle
obs . Let

v ∈ E∗
obs such that δobs(qi,obs, v) = qobs. Define σ ∈ P (L(G)) such that P (σ)elem =

vsj where j is an infinite integer. By assumption δobs(qobs, ω) ∈ Qsingle
obs , we then have

δobs(qi,obs, vs
jω) ∈ Qsingle

obs . Let n = |v|∈ N, then by Proposition 1 and Lemma 1, we can
claim that

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pref(σ))

|P (σ′)|> n ⇒ |C(P (σ′))|= 1.

That is, UWA G is detectable.
(Only If) Assume that G is detectable with respect to projection P , that is,

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pref(σ))

|P (σ′)|> n ⇒ |C(P (σ′))|= 1.
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Since σ is an infinite sequence, then P (σ)elem must visit at least one elementary circuit
(qobs, s) ∈ Sci in Gobs infinitely often. Let v ∈ E∗

obs such that δobs(qi,obs, v) = qobs. By
assumption |C(P (σ′))|= 1 and Proposition 1, we have (∀ω ∈ Pref(s))δobs(qi,obs, vω) ∈

Qsingle
obs , which is equivalent to (∀ω ∈ Pref(s))δobs(qobs, ω) ∈ Qsingle

obs . Thus, (∃(qobs, s) ∈

Sci)(∀ω ∈ Pref(s))δobs(qobs, ω) ∈ Qsingle
obs .

Theorem 3 (Criterion for Checking Strong Periodic Detectability). A UWA G is strongly
periodically detectable with respect to projection P iff each elementary circuit of observer
Gobs contains at least one state belonging to Qsingle

obs , that is: (∀(qobs, s) ∈ Sci)(∃ω ∈

Pref(s))δobs(qobs, ω) ∈ Qsingle
obs .

Proof. (If) Assume that G is not strongly periodically detectable with respect to projection
P , namely,

(∀n ∈ N)(∃σ ∈ Lω(G))(∃σ′ ∈ Pref(σ))

(∀σ′′ ∈ (E ×D)∗)σ′σ′′ ∈ Pref(σ)

∧|P (σ′′)|< n ⇒ |C(P (σ′σ′′))|6= 1.

From the construction procedure of Gobs, we know that the length of a sequence involving
no circuit in Gobs is bounded by |Qobs|−1. Now let n = |Qobs|+1 and |P (σ′′)|= |Qobs|.
Then, sequence P (σ)elem must visit at least one elementary circuit (qobs, s) ∈ Sci in
Gobs such that it is the last elementary circuit passed by P (σ′σ′′)elem. Since (∀σ′′ ∈
(E ×D)∗)σ′σ′′ ∈ Pref(σ) ∧ |P (σ′′)|< |Qobs|+1 ⇒ |C(P (σ′σ′′))|6= 1, by Proposition 1, we

have (∀ω ∈ Pref(s))δobs(qobs, ω) /∈ Qsingle
obs . Otherwise, there must exist σ′′ ∈ (E ×D)∗

such that σ′σ′′ ∈ Pref(σ), |P (σ′′)|< |Qobs|+1, and |C(P (σ′σ′′))|= 1, which contradicts the

above assumption. Therefore, (∃(qobs, s) ∈ Sci)(∀ω ∈ Pref(s))δobs(qobs, ω) /∈ Qsingle
obs .

(Only If) Assume that (∃(qobs, s) ∈ Sci)(∀ω ∈ Pref(s))δobs(qobs, ω) /∈ Qsingle
obs . Let v ∈

E∗
obs such that δobs(qi,obs, v) = qobs. Define σ ∈ L(G) such that P (σ)elem = vsj where j is

an infinite integer. Let σ′ ∈ Pref(σ) such that P (σ′)elem = v. Then, by Proposition 1 and
Lemma 1, for any n ∈ N and any σ′′ ∈ (E ×D)∗ such that σ′σ′′ ∈ Pref(σ) and |P (σ′′)|< n,
C(P (σ′σ′′)) corresponds to a state δobs(qobs, ω), with ω ∈ Pref(s), in elementary circuit
(qobs, s). Since all states in (qobs, s) are not singleton, then |C(P (σ′σ′′))|6= 1. This implies
that

(∀n ∈ N)(∃σ ∈ Lω(G))(∃σ′ ∈ Pref(σ))

(∀σ′′ ∈ (E ×D)∗)σ′σ′′ ∈ Pref(σ)

∧|P (σ′′)|< n ⇒ |C(P (σ′σ′′))|6= 1.

That is, UWA G is not strongly periodically detectable.

Theorem 4 (Criterion for Checking Periodic Detectability). A UWA G is periodically
detectable with respect to projection P iff there is at least one elementary circuit in observer
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Gobs which contain at least one state belonging to Qsingle
obs , that is: (∃(qobs, s) ∈ Sci)(∃ω ∈

Pref(s))δobs(qobs, ω) ∈ Qsingle
obs .

Proof. (If) Assume (∃(qobs, s) ∈ Sci)(∃ω ∈ Pref(s))δobs(qobs, ω) ∈ Qsingle
obs . Let v ∈ E∗

obs

such that δobs(qi,obs, v) = qobs. Define σ such that P (σ)elem = vsj where j is an infinite
integer. Let n = |vs|, according to Proposition 1 and Lemma 1, we know that for all
σ′ ∈ Pref(σ), there must exist σ′′ ∈ (E ×D)∗ such that σ′σ′′ ∈ Pref(σ), |P (σ′′)|< n, and
P (σ′σ′′) reaches the singleton state δobs(qobs, ω) in circuit (qobs, s), i.e., |C(P (σ′σ′′))|= 1.
This implies that

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pref(σ))

(∃σ′′ ∈ (E ×D)∗)σ′σ′′ ∈ Pref(σ)

∧|P (σ′′)|< n ∧ |C(P (σ′σ′′))|= 1.

That is, UWA G is periodically detectable.
(Only If) Assume that G is periodically detectable with respect to projection P , that

is,

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pref(σ))

(∃σ′′ ∈ (E ×D)∗)σ′σ′′ ∈ Pref(σ)

∧|P (σ′′)|< n ∧ |C(P (σ′σ′′))|= 1.

Given an infinite sequence σ satisfying the conditions in the above equation, then P (σ)elem

must visit at least one elementary circuit (qobs, s) ∈ Sci of Gobs in which |C(P (σ′σ′′))|=
1 holds for any σ′ ∈ Pref(σ) and for some σ′′ ∈ (E ×D)∗. Let v ∈ E∗

obs such that

δobs(qi,obs, v) = qobs. By Proposition 1, we have (∃ω ∈ Pref(s))δobs(qi,obs, vω) ∈ Qsingle
obs ,

which is equivalent to (∃ω ∈ Pref(s))δobs(qobs, ω) ∈ Qsingle
obs . Hence, (∃(qobs, s) ∈ Sci)(∃ω ∈

Pref(s))δobs(qobs, ω) ∈ Qsingle
obs .

Remark 3. By Theorems 1–4, in order to check detectabilities of UWA G =
(Q,E,α, µ), we need to find out all states belonging to elementary circuits in Gobs =
(Qobs, Eobs, δobs, qi,obs). This can be done by finding all the strongly connected components
(SCCs) in Gobs, with a complexity that is linear in the number of states and transitions of
Gobs, i.e., O(|Qobs|+|Qobs|×|Eobs|). A SCC is said to be valid if it contains multiple nodes
or contains only one node and the node has a self-loop.

Strong detectability can be verified by checking if all states that are reachable
from any state belonging to the elementary circuits are singleton, with complexity
O(|Qobs|×[|Qobs|+|Qobs|×|Eobs|]) = O(|Qobs|

2×|Eobs|). Detectability can be verified as
follows: for any valid SCC, we first identify all its singleton states, delete all the other
non-singleton states and the associated transitions to obtain a subgraph of this SCC. Then
we check if the remaining subgraph is a SCC (i.e. contains a circuit). The complexity of
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the above operations is linear in the number of states and the transitions in the remaining
subgraph of the SCC, i.e., O(|Qobs + |Qobs|×|Eobs|) = O(|Qobs| × |Eobs|). Since there
are at most |Qobs| SCCs in Gobs, the detectability can be verified with a complexity
O(|Qobs|

2×|Eobs|). Similar to detectability verification, strong periodic detectability can be
verified with a complexity O(|Qobs|

2×|Eobs|). More precisely, we can verify strong periodic
detectability as follows: for any valid SCC, we first identify all its non-singleton states,
delete all the other singleton states and the associated transitions to obtain a subgraph of
this SCC. Then we check if the subgraph contains a (elementary) circuit consisting only of
non-singleton states. Periodic detectability can be verified by checking if there exists a valid
SCC such that it contains a singleton state. The complexity of doing this is O(|Qobs|

2) as
there are at most |Qobs| valid SCCs and the number of states in each valid SCC is bounded
by |Qobs|.

Example 6. Consider observer Gobs in Fig. 4 of UWA G in Fig. 1. By Theorems 1 and
3, G is not strongly detectable and not strongly periodically detectable since elementary

circuit ({2, 3} , {2, 3})
(b,0.3)
−→ ({2, 3} , {2, 3}) has its state in Qobs \ Qsingle

obs . Because circuit

({3} , {3})
(b,0.3)
−→ ({3} , {3}) has all its states in Qsingle

obs , by Theorems 2 and 4, G is detectable
and periodically detectable.

Example 7. Consider UWA G in Fig. 5 whose observer Gobs is presented in Fig. 6.
By Theorems 1-4, we know that G is strongly detectable (hence, detectable, strongly
periodically detectable and periodically detectable) since all states reachable from any

elementary circuit of Gobs are entirely within Qsingle
obs . Note that the underlying logical

automaton is not strongly detectable. In fact, for observation bk with k ∈ {1, 2, · · ·}, the
logical automaton may always have two possible current states, i.e. 2 and 3.

1 2 3 4

e e

/ 0.2b / 0.3b

/ 0.3u / 0.2u/ 0.3d

/ 0.4c

Figure 5: Unambiguous weighted automaton G.

5 CONCLUSION

In this paper, we deal with the detectability problem for UWAs. An algorithm is first
proposed to build an observer of a UWA, and then necessary and sufficient conditions are
proposed for checking four types of detectabilities. As a future work, we plan to investigate
the detectability problem for more general WAs.
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({1,4},{1,2,3,4}) ({2,3},{2,3})

({3},{3})

({2},{2})

Figure 6: Observer Gobs of automaton G in Fig. 5.
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