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Abstract
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1 Introduction

In paper [3], which we co-authored with M.P. Cabasino, necessary and sufficient conditions
for diagnosability and K-diagnosability of labeled Petri nets were presented. It was pointed
out to us by Béatrice Bérard, Stefan Haar, Sylvain Schmitz, and Stefan Schwoon, that two
key results in [3] — Theorems 6.4 and 6.7 — are incorrect as stated. More precisely, both
the necessity and the sufficiency parts of each theorem do not hold in general and examples
to that effect were provided to us by Bérard et al.

From these examples we realized that an important assumption was missing in [3]. The
results contained therein, in fact, apply to nets that are divergent-free but the requirement for
this property was never explicitly mentioned. On the contrary, we point out that a sufficient
condition ensuring such a property, namely the acyclicity of the unobservable subnet, was
explicitly mentioned in [2], where some of the results in [3] were preliminarily introduced.

In a partially observed discrete event system, divergence [4] is an undesirable property. It
describes the possibility for a system of concealing an infinite sequence of activities, thereby
renouncing to engage in any further communication with the environment. As lucidly ex-
plained by Hoare [4]: “It is a shame to devote so much attention to divergence, when
divergence is always something we do not want. Unfortunately, it seems to be an inevitable
consequence of any efficient of (sic) even computable method of implementation.”

In the case of labeled Petri nets, very few works have been devoted to the analysis of
divergence and to investigate how it may affect diagnosis and diagnosability. Two recent
contributions in this framework are [1,7]. In these papers, the authors focus on the problem
of determining the computational complexity of diagnosability analysis in labeled Petri nets.
Bérard et al. [1] show that, in the case of unbounded nets, the analysis is EXSPACE-hard due
to some sequences (the so called twin-fair traces) that appear in a structure called Verifier.
Yin and Lafortune [7] show that the diagnosability verification problem can be reduced to
a model checking problem for unbounded Petri nets called the “satisfiability problem of
Yen’s formula”, and draw analogous conclusions in terms of complexity (see also [8] for some
clarifications).

In this paper, motivated by the above results and by the fact that divergence is an undesir-
able property, we aim to characterize nets that are divergence-free and discuss a structural
condition which implies divergence-freeness.

We start by presenting in Section 2 the definition of partially observed Petri nets and some
properties related to repetitive sequences, that characterize the infinite behaviour of this
model, and thus are fundamental in the study of divergence and diagnosability. Section 3 in-
troduces two important notions, called language divergence-freeness and marking divergence-
freeness. It is shown that these properties characterize nets such that, respectively, the set
of sequences and the set of markings that are consistent with a finite observation is always
finite. In Section 4 we recall the definitions of diagnosability and K-diagnosability, and clar-
ify the considered framework. In Section 5 we first recall the main results presented in [3]

2



concerning the analyis of diagnosability and K-diagnosability. Then, we discuss the coun-
terexamples by Bérard et al., which show that such results are not correct for divergent nets.
Finally, in Section 6 we show that the results in [3] are indeed correct for divergence-free nets.
In this section we also discuss the alternative assumption presented in [2] which requires the
acyclicity of the unobservable subnet. We show that for the purpose of diagnosability analy-
sis this structural assumption provides sufficient conditions for divergence-freeness with the
important computational advantage of not requiring the analysis of the system behavior.

2 Preliminaries and notations

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post) where: P is a set of
m places; T is a set of n transitions; and Pre : P × T → N and Post : P × T → N are
the pre– and post– incidence functions that specify the arcs. C = Post − Pre denotes the
incidence matrix of the net. A marking (i.e., net state) is a vector M : P → N that assigns
to each place of a P/T net a non–negative integer number of tokens, represented by black
dots in diagrams. We denote by M(p) the marking of place p. A P/T system or net system
〈N,M0〉 is a net N with an initial marking M0. Hereafter we refer to a P/T net as a Petri
net, often abbreviated as PN.

A transition t is said to be enabled at M iff M ≥ Pre(· , t); an enabled transition t may
fire yielding the marking M ′ = M + C(· , t). We write M [σ〉 to denote that the sequence of
transitions σ = tj1 · · · tjk is enabled at M , and we write M [σ〉 M ′ to denote that the firing
of σ yields M ′.

The set of all finite sequences that are enabled at the initial marking M0 is denoted by
L(N,M0), i.e., L(N,M0) = {σ ∈ T ∗ |M [σ〉}, where T ∗ is the Kleene closure of T , namely the
set of all possible finite sequences that can be obtained combining elements in T . Moreover,
T ω and Lω(N,M0), denote respectively, the set of infinite sequences that can be obtained
combining elements in T and the set of infinite length sequences that can be generated at
M0. We use λ to denote an empty sequence of transitions, i.e., σλ = λσ = σ, ∀σ ∈ T ∗.

A marking M is reachable in 〈N,M0〉 iff there exists a firing sequence σ such that M0 [σ〉M .
The set of all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is
denoted by R(N,M0).

A Petri net having no directed circuits is called acyclic.

A net system 〈N,M0〉 is bounded if there exists a positive constant k such that, for all
M ∈ R(N,M0), and for all p ∈ P , M(p) ≤ k. If this is not the case, namely, if the number
of tokens in one or more places can grow arbitrarily large, then the Petri net system is
unbounded.

A non-empty sequence σ ∈ T ∗ \ {λ} is called repetitive if there exists a marking M1 ∈
R(N,M0) such that

M1[σ〉M2[σ〉M3[σ〉 · · · (1)
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i.e., if it can fire infinitely often starting from M1. It is possible to distinguish two different
types of repetitive sequences:

– stationary sequence: if in (1) Mi = Mi+1 for all i = 1, 2, . . ..

– increasing sequence: if in (1) Mi �Mi+1 for all i = 1, 2, . . ..

A labeling function L : T → L∪ {ε} assigns to each transition t ∈ T either a symbol from a
given alphabet L or the empty string ε. We denote by Tu the set of transitions whose label
is ε, i.e., Tu = {t ∈ T | L(t) = ε}. Transitions in Tu are called unobservable or silent. We
denote by To the set of transitions labeled with a symbol in L. Transitions in To are called
observable because when they fire their label can be observed.

We extend the labeling function to define the projection operator L : T ∗ → L∗ recursively
as follows:

(i) if tj ∈ To then L(tj) = l for some l ∈ L;

(ii) if tj ∈ Tu then L(tj) = ε;

(iii) if σ ∈ T ∗ ∧ tj ∈ T then L(σtj) = L(σ)L(tj);
Moreover, L(λ) = ε.

Using the extended labeling function, the language of transition labels is therefore denoted
by L(L(N,M0)).

Finally, given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, we define
the T ′−induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′ are
the restrictions of Pre, Post to T ′.

In the following, the unobservable subnet, i.e., the Tu-induced subnet of N , is denoted as
Nu.

3 Divergence-free nets

In this section we formalize two key definitions related to divergence. Similar notions can
be found in the framework of sequential processes [4].

Definition 1 A labeled PN 〈N,M0,L〉 is called language divergence-free if for all M ∈
R(N,M0) it holds that | L(Nu,M) | < ∞, i.e., any reachable marking M enables a finite
number of sequences of unobservable transitions. ♦

Definition 2 A labeled PN 〈N,M0,L〉 is called marking divergence-free if for all M ∈
R(N,M0) it holds that | R(Nu,M) | <∞, i.e., any reachable marking M has a finite unob-
servable reach. ♦
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The following result, which trivially derives from the above definitions, provides a test to
verify the above two properties looking at repetitive sequences.

Fact 1 A labeled PN 〈N,M0,L〉 is:
(1) language divergence-free if and only if it admits no repetitive sequence of unobservable
transitions;
(2) marking divergence-free if and only if it admits no increasing repetitive sequence of un-
observable transitions. ♦

Remark 1 From the previous result it also follows that language divergence-freeness implies
marking divergence-freeness, while the converse does not hold in general. ♦

We now prove a result that will be used in the following, namely that in a language
divergence-free net the set of firing sequences consistent with a given observation is finite.

Proposition 1 A labeled PN 〈N,M0,L〉 is language divergence-free if and only if for all
observations σo ∈ T ∗o it holds that

| {σ ∈ L(N,M0) | L(σ) = σo} |<∞. (2)

Proof:

If. Consider an evolution M0[σ〉M which reaches a generic marking M and let σo = L(σ)
be the corresponding observation. If (2) holds, then only a finite number of unobservable
transitions can fire after σ. This implies that the net is language divergence-free according
to Definition 1.

Only if. This implication can be proved by induction on the length k of σo.

If σo has length k = 0, i.e., σo = ε, then {σ ∈ L(N,M0) | L(σ) = ε} = L(Nu,M0) which is
finite by Definition 1.

Assume the result holds for all σo of length k and consider a sequence σot ∈ T ∗o of length
k + 1. Then

{σ ∈ L(N,M0) | L(σ) = σot} =

{σ′tσ′′ | L(σ′) = σo,M0[σ
′〉M ′[t〉M ′′,

σ′′ ∈ L(Nu,M
′′)}

which is also finite by the assumption and by Definition 1. �

With a similar reasoning, it can be shown that in a marking divergence-free net the set of
markings consistent with a given observation is finite. This is formalized in the next result,
whose proof is omitted.
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Proposition 2 A labeled PN 〈N,M0,L〉 is marking divergence-free if and only if for all
observation σo ∈ T ∗o it holds

| {M ∈ Nm |M0[σ〉M,L(σ) = σo} |<∞. (3)

�

4 Diagnosability definitions

We now recall two fundamental definitions, namely diagnosability and K-diagnosability of
labeled Petri nets. In particular, we provide them under the same general setting considered
in [3], where the labeling function is arbitrary and thus two or more observable transitions
may share the same label. Furthermore, as in [3], we assume that the system does not enter
a deadlock after the firing of a fault transition: the latter condition, which is purely technical
and common in the literature, is introduced to ensure that the notion of diagnosability is well
posed. However, to simplify the analysis presented in the following sections, the definitions
of diagnosability and K-diagnosability are rewritten in slightly different terms with respect
to [3]. Finally, to avoid a cumbersome notation we consider a single fault class containing all
transitions in the set of fault transitions Tf . It holds that Tf ⊆ Tu, i.e., all fault transitions
are labeled with the empty string ε.

Definition 3 A labeled PN 〈N,M0,L〉 is diagnosable iff condition A holds, where

A: There does not exist an infinite transition sequence σ = σ1tfσ2 ∈ Lω(N,M0) such that
σ1 ∈ T ∗, tf ∈ Tf , σ2 ∈ T ω and for all finite prefixes σ̂ � σ there exists a sequence
σ̂′ ∈ L(N,M0) ∩ (T \ Tf )∗ such that L(σ̂′) = L(σ̂). ♦

Definition 4 A labeled PN 〈N,M0,L〉 is K-diagnosable iff condition A′ holds, where

A′: There does not exist a transition sequence σ = σ1tfσ2 ∈ L(N,M0) such that σ1 ∈
T ∗, tf ∈ Tf , σ2 ∈ T ∗, the length of σ2 is |σ2| > K, and for all prefixes σ̂ � σ there
exists a sequence σ̂′ ∈ L(N,M0) ∩ (T \ Tf )∗ such that L(σ̂′) = L(σ̂). ♦

In simple words, diagnosability implies that the occurrence of a fault can be detected after
a finite number of transition firings; diagnosability in K steps implies that the occurrence of
a fault can be detected after a finite number K of transition firings.

5 Main results in [3] and counterexamples

In this section we first recall the key results in [3], namely Proposition 6.3 [3] and Theo-
rems 6.4 [3] and 6.7 [3]. Then we provide two counterexamples to them.
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All such results use the notion of Verifier Net (VN) [3]. The VN is a labeled Petri net obtained
by composing the unfaulty subnet 〈N ′,M ′

0,L′〉, namely the (T \Tf )-induced subnet, and the
original system 〈N,M0,L〉, assuming that the synchronization is performed on the observable
transition labels. The set F (VN) is the set of faulty nodes in the reachability/coverability
graph (RG/CG) of the VN, namely the nodes that can be reached from the initial node by
a path that contains a transition (λ, tf ), with tf ∈ Tf .

Proposition 6.3 [3]: Given a labeled Petri net system 〈N,M0,L〉 and its VN, if a sequence

σ̃ = (t′i1 , ti1)(t
′
i2
, ti2) . . . (t

′
ik
, tik)

is repetitive in the VN, then there exists a repetitive sequence σ′ = t′i1t
′
i2
. . . t′ik in 〈N ′,M ′

0〉
and a repetitive sequence σ = ti1ti2 . . . tik in 〈N,M0〉 and both sequences σ and σ′ have the
same observable projection. �

Finally, let us recall Theorems 6.4 [3] and 6.7 [3].

Theorem 6.4 [3]: A labeled PN system 〈N,M0,L〉 is diagnosable iff there does not exist a
cycle in the RG/CG graph of its Verifier Net which is associated with a firable repetitive
sequence and is reachable from a node in the set F (VN). �

Theorem 6.7 [3]: Let 〈N,M0,L〉 be a labeled Petri net system. There exists a finite K such
that the system is diagnosable in K steps iff in the RG/CG of its VN no node in the set
F (VN) belongs to a cycle. �

Let us now discuss two counterexamples to Theorem 6.4 [3] provided to us by Bérard et al.
The first one is relative to the necessary (only if) condition of the theorem, the second one
to the sufficient (if) condition. The second example also shows an exception to the validity
of Proposition 6.3 [3].

The first labeled Petri net system, taken from [1], is shown in Fig. 1.a where t1 is an unob-
servable transition and L(t2) = a. Such a net, which is divergent due to the presence of the
selfloop (t1, p1), is clearly diagnosable. Indeed, after the fault occurs, only transition t2 can
fire and an a is observed: the fault occurrence is thus reconstructed. However, the condition
in Theorem 6.4 [3] does not hold. The VN is shown in Fig. 1.b. Here places marked with
a prime are those of the fault-free net, while the others are the places of the original net;
the two nets are composed synchronizing transitions with the same label. The reachability
graph of the VN is shown in Fig. 1.c where, for sake of clarity, markings are represented by
multisets: as an example, p′1 + p1 denotes the marking with only one token in place p′1 and
one in p1.

As it can be seen, in the reachability graph of the VN there exists a cycle associated with
a firable repetitive sequence of the VN, i.e., the self-loop σ̃ = (t′1, λ), which can fire from a
node in F (VN), i.e., the node p′1 + p2.

This example also allows us to highlight an exception to the validity of Proposition 6.3 [3]:
in this case the repetitive sequence of the VN σ̃ = (t′1, λ) projected on the two nets gives
σ′ = t′1 and σ = λ but the latter, being the empty string, is not a repetitive sequence as
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Figure 1: A counterexamle to the only if condition of Theorem 6.4 [3]: (a) a Petri net, (b)
its Verifier Net, (c) the reachability graph of the Verifier Net.

prescribed and does not correspond to an evolution of the unfaulty net.

The second counterexample is reported in Fig. 2 where t5 is an unobservable transition,
L(t2) = L(t4) = a and L(t1) = L(t3) = b. Such a net, which is divergent due to the presence
of the selfloop (ε5, p1), is not diagnosable according to Definition 3. In fact, each faulty
sequence σ̂ = t3tf t

k
4, for k ∈ N, which is a prefix of σ = t3tf t

ω
4 , produces the observation

L(σ̂) = bak, which may also be produced by the firing of sequence σ̂′ = t5
kt1t

k
2. However,

Theorem 6.4 [3] would lead to the opposite conclusion. To show this we compute the VN
associated with the Petri net in Fig. 2 and its coverability graph. The VN is reported in
Fig. 3.a. For sake of clarity, in order to avoid intersections among arcs, places are often
repeated but represented with a unique different color. A part of the coverability graph
of the VN is reported in Fig. 3.b. In particular, this figure only shows the root node and
nodes in the set F (VN) reachable after the occurrence of the fault, while the other nodes are
omitted. Again, in Fig. 3.c, as well as in the previous Fig. 1.b, markings are not represented
as vectors but as multisets: as an example, p′2 +ωp3 +p5 denotes an ω-marking assigning one
token to place p′2 and p5 and an arbitrarily large number of tokens to place p3. In Fig. 3 one
can see two cycles at two nodes in F (VN), both involving only transition (t′2, t4). However,
as it clearly appears from Fig. 3.b, such cycles do not correspond to repetitive sequences in
the VN since transition (t′2, t4) reduces the number of tokens in p′3 whenever it fires.

6 Revised diagnosability analysis

In this section we show how divergence properties are relevant for diagnosability analysis.
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p1 p3 

p2 

 t4(a)  t5(ε) 

 t1(b)  t2(a) 

 t3(b) 

p4 

tf 
p5 

Figure 2: A counterexample to the if condition of Theorem 6.4 [3].

In particular, we show which additional assumption in Theorems 6.4 [3] and 6.7 [3] allows
one to obtain a correct test for diagnosability and K-diagnosability analysis.

6.1 A behavioral assumption

We first introduce a new condition, denoted as B, which allows us to provide a revised
formulation of Theorems 6.4 [3] and 6.7 [3]. In particular, this can be easily done putting
condition B in relationship with condition A introduced above.

B: There does not exist an infinite transition sequence σ = σ1tfσ2 ∈ Lω(N,M0) such
that: (a) σ1 ∈ T ∗, tf ∈ Tf , σ2 ∈ T ω and (b) there exists an infinite transition sequence
σ′ ∈ Lω(N,M0) ∩ (T \ Tf )ω such that L(σ′) = L(σ).

Obviously A =⇒ B but the reverse implication does not necessarily hold. This can be seen
considering the net in Fig. 2. Consider for instance the infinite faulty sequence σ = t3tf t

ω
4

producing observation L(σ) = baω. Obviously condition A does not hold since for any prefix
σ̂ = t3tf t

k
4 there exists a fault-free sequence σ̂′ = t5

kt1t
k
2 such that L(σ̂′) = L(σ̂) = bak.

By Definition 3, we conclude that the net is not diagnosable. However, condition B holds
because there exists no infinite sequence σ′ as defined in the statement of the condition.
In fact the only infinite fault-free sequence of this net is t5

ω which produces observation
L(t5

ω) = ε.

We now show that language divergence-freeness implies that the two conditions A and B are
equivalent1.

Proposition 3 For a language divergence-free labeled PN 〈N,M0,L〉 it holds that A ⇐⇒ B.

Proof: As we have mentioned above, the implication A =⇒ B follows immediately from
the definition of the two conditions. We are left to prove that for language divergence-free

1The result of Proposition 3 also follows from the more general setting in [1] (see Lemma 2.6) where
condition A is called “finitely diagnosable” and condition B is called “trace diagnosable”.
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Figure 3: (a) Verifier Net for the net in Fig. 2, (b) coverability graph of the Verifier Net for
the net in Fig. 2.
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nets the reverse implication B =⇒ A holds. This will be shown by contraposition, namely
proving that ¬A =⇒ ¬B.

The language divergence-free assumption (see eq. (2)) implies that

∀σ̂ ∈ L(N,M0) :

| {σ̂′ ∈ L(N,M0) | L(σ̂′) = L(σ̂)} |<∞.
(4)

Now consider an infinite transition sequence σ = σ1tfσ2 ∈ Lω(N,M0) such that σ1 ∈ T ∗, tf ∈
Tf , σ2 ∈ T ω which violates condition A. We can also write this sequence as:

σ = σ1tfσ2 = σ1tfσuo,1tj1σuo,2tj2 · · · (5)

where for i ∈ {1, 2, · · · } it holds σuo,i ∈ T ∗u and tji ∈ To.

Consider the set of sequences

Σ0 = {σ̂′ ∈ L(N,M0) ∩ (T \ Tf )∗ | L(σ̂′) = L(σ1tf )}

which is finite by (4). We construct a forest that has as root nodes (tier 0) the elements of
Σ0. The set of nodes in tier i (for i = {1, 2, . . .}) is

Σi = {σ̂′ ∈ L(N,M0) ∩ (T \ Tf )∗ |

L(σ̂′) = L(σ1tfσuo,1tj1 . . . σuo,itji)}

and we add a directed arc from a node σ̂′i−1 in tier i − 1 to a node σ̂′i in tier i if σ̂′i−1 � σ̂′i.
Such a forest has a finite branching by (2) but, since it violates condition A, has an infinite
number of nodes. By König’s lemma [5] the forest must have an infinite path. Such a path
corresponds to an infinite transition sequence σ′ that violates condition B. �

We point out that it is possible to prove that the above proposition also holds under the
weaker assumption that the net is marking divergence-free. However, in this case the proof
is more involved and goes beyond the scope of this note.

From the above Proposition 3, Definition 3 can be particularized to language divergence-free
labeled PN as formalized by the following corollary.

Corollary 1 A language divergence-free labeled PN 〈N,M0,L〉 is diagnosable iff condition
B holds. ♦

Another consequence of language divergence-freeness is the following.

Proposition 4 Proposition 6.3 [3] holds for a language divergence-free labeled PN 〈N,M0,L〉.

Proof: First from the definition of VN we know that the fault-free sequence σ′ ∈ L(N ′,M ′
0)

and the sequence σ ∈ L(N,M0) have the same observable projection L′(σ′) = L(σ). If
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sequence σ̃ is repetitive in the VN, then there exists a reachable marking M̃ = [M ′T ,MT ]T

such that  M ′

M

 [σ̃〉V N

 M̄ ′

M̄

 ≥
 M ′

M


which implies

M ′ [σ′〉N ′ M̄ ′ ≥M ′ and M [σ〉N M̄ ≥M. (6)

Now, consider the assumption that system 〈N,M0,L〉 is divergence-free, which obviously
implies that also the fault-free system 〈N ′,M ′

0,L′〉 is divergence-free.

By the definition of VN, at least one between σ′ and σ must be different from the empty
string λ. Assume, with no loss of generality, that σ′ is non-empty: since it satisfies (6)
it is repetitive, hence due to the divergence-freeness assumption must contain an observable
transition. This implies that also σ contains at least an observable transition, i.e., it is
non-empty: since σ satisfies (6) it is also repetitive. �

The last two results presented above have the following implication, which can be expressed
in a compact form preliminarily introducing the new condition below.

C: There does not exist a cycle in the RG/CG graph of its Verifier Net which is associated
with a firable repetitive sequence and is reachable from a node in the set F (VN).

Theorem 6.4 rev1: A language divergence-free labeled PN system 〈N,M0,L〉 is diagnosable
iff condition C holds.

Proof: By Corollary 1, it is sufficient to prove that B ⇐⇒ C for language divergence-free
labeled PN systems.

• B ⇐= C. In the proof of the if part of Theorem 6.4 [3] it was shown that if condition C
holds then also condition B holds. Indeed, this implication does not even require language
divergence-freeness.

• B =⇒ C. The proof of the only if part of Theorem 6.4 [3] used the result of Propo-
sition 6.3 [3] to show that if B holds then C holds. Proposition 4 above ensures that
Proposition 6.3 [3] holds for language divergence-free nets. �

Finally, similarly to Theorem 6.4 [3], Theorem 6.7 [3] can be revised as follows.

Theorem 6.7 rev1: Let 〈N,M0,L〉 be a language divergence-free labeled Petri net system.
There exists a finite K such that the system is diagnosable in K steps iff in the RG/CG of
its VN no node in the set F (VN) belongs to a cycle. �

The proof follows from the fact that, as shown in [3], Theorem 6.7 derives from Theorem 6.4.
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6.2 A structural alternative assumption

We conclude this section proving that the language divergence-freeness assumption can be
replaced by the following structural assumption, in order to guarantee the validity of Theo-
rem 6.4 [3].

Assumption . The Tu-induced subnet is acyclic.

To this aim we first provide the following result.

Proposition 5 If the unobservable subnet of a given labeled PN 〈N,M0,L〉 satisfies the
following two assumptions:

(i) it has no source transitions,

(ii) it is acyclic,

then 〈N,M0,L〉 is language divergence-free.

Proof: Follows from Propositition 3 in [9]. �

Thanks to the above proposition, an additional revised version of Theorem 6.4 [3] can be
provided.

Theorem 6.4 rev2: A labeled PN system 〈N,M0,L〉 whose Tu-induced subnet is acyclic is
diagnosable iff condition C holds.

Proof: This result follows from the following considerations. Under the assumption that the
Tu-induced subnet is acyclic we have to consider two cases.

• Case 1: there exists no unobservable source transition. In this case thanks to Proposition 5
the net is language divergence-free and the result follows from Theorem 6.4 rev1.

• Case 2: there exists an unobservable source transition t. In such a case after a fault occurs
this transitions can fire infinitely often and thus the system is not diagnosable. In addition
a source transition (λ, t) will also be present on the VN which will necessarily cause in its
reachability graph a cycle associated with such a firable repetitive sequence. �

Finally, Theorem 6.7 [3] can be similarly revised as follows.

Theorem 6.7 rev2: Let 〈N,M0,L〉 be a labeled Petri net system whose Tu-induced subnet
is acyclic. There exists a finite K such that the system is diagnosable in K steps iff in the
RG/CG of its VN no node in the set F (VN) belongs to a cycle. �

Also in this case the proof follows from the fact that, as shown in [3], Theorem 6.7 derives
from Theorem 6.4.
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7 Conclusions

The contribution of this paper is twofold. First, we formalized two properties in the frame-
work of labeled Petri nets, namely language divergence and marking divergence, and provided
some characterizations that are fundamental for diagnosability analysis. Then, we fixed a
technical problem in [3] where a diagnosability analysis approach for labeled Petri nets is
proposed. Indeed, as shown in the paper via two simple examples, Theorems 6.4 and 6.7
in [3], providing necessary and sufficient conditions for diagnosability and K-diagnosability,
respectively, are not correct in general. We solved this issue proving that the two theorems
in [3] are correct if applied to nets that are language divergence-free. Finally, we proposed
an alternative structural assumption — requiring the acyclicity of the unobservable subnet
— and showed that it also ensures that the above two theorems hold.
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