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1. INTRODUCTION

Detectability is a property that describes whether the current
and all subsequent states of a system can be determined by
observing output sequences (Giua and Seatzu, 2002; Shu et al.,
2007; Shu and Lin, 2011, 2013; Fornasini and Valcher, 2013;
Xu and Hong, 2013; Zhang et al., 2016). It plays a fundamental
role in many related control problems such as observer design
and controller synthesis. Hence for different applications, it is
meaningful to characterize detectability for control systems in
different frameworks.

For discrete event systems (DESs), the verification problem
for detectability in the framework of finite automata has been
widely studied (Shu et al., 2007; Shu and Lin, 2011, 2013;
Zhang, 2017; Masopust, 2017; Yin and Lafortune, 2017; Yin,
2017; Keroglou and Hadjicostis, 2015). For different uses,
detectability is formulated as strong detectability and weak
detectability (Shu et al., 2007), where the former describes
whether any sufficiently long output sequence (corresponding
to observable event sequence) can determine the current and all
subsequent states, while the latter means whether some suffi-
ciently long output sequence can do that. Strong detectability
can be verified in polynomial time but weak detectability can
only be verified in exponential time currently (Shu et al., 2007;
Shu and Lin, 2011). It is proved that the problem of deciding
weak detectability of DESs in the framework of finite automata
is PSPACE-complete even for only deterministic DESs whose
events are all observable (Zhang, 2017), hence it is unlikely
that there exists a polynomial time algorithm for verifying weak
detectability. Then what if the framework of Petri nets is con-
sidered? Different from the finiteness of states and events of
finite-automaton-based DESs, although Petri-net-based DESs
have finitely many transitions (i.e., events), they may have at
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most countably infinitely many markings (i.e., states). Hence
the weak detectability for Petri-net-based DESs may be more
complex than that for finite-automaton-based DESs.

Taking opacity for example, where opacity is a property that
describes whether an intruder (outside a system) can never
determine whether some states of the system prior to the cur-
rent time step are secret, although the problems of verifying
different types of opacity of finite-automaton-based DESs are
at least NP-hard, they are decidable (Saboori and Hadjicostis,
2012, 2011, 2007, 2013) (stochastic finite automata excluded
(Saboori and Hadjicostis, 2014)). However, the opacity verifi-
cation problems are generally undecidable (Bryans et al., 2008;
Jacob et al., 2016; Tong et al., 2017). Then it is interesting to
study whether from the perspective of detectability, whether
Petri-net-based DESs are more complex than finite-automaton-
based DESs. In this paper, we obtain related preliminary results.

The contributions of this paper are as follows. We prove that
1) the problem of deciding weak detectability of labeled Petri
net (LPN) systems with inhibitor arcs is undecidable, and 2)
the problem of deciding weak approximate detectability of
LPN systems is also undecidable, where weak approximate
detectability means that whether some sufficiently long label
sequence (corresponding to output sequence) can determine the
current and all subsequent markings in one of some prescribed
subsets of reachable markings.

The remainder of the paper is arranged as follows. Section 2
introduces necessary preliminaries, Section 3 shows the main
results, and Section 4 ends up with some remarks.

2. PRELIMINARIES

For a finite set S, S∗ and Sω are used to denote the sets of
finite sequences (called words) of elements of S including the
empty word ϵ and infinite sequences (called configurations) of
elements of S, respectively. For a word s ∈ S∗, |s| stands
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for its length, and we set |s′| = +∞ for all s′ ∈ Sω . For
s ∈ S and natural number k, sk and sω denote the k-length
word and configuration consisting of copies of s’s, respectively.
For a word (configuration) s ∈ S∗(Sω), a word s′ ∈ S∗ is
called a prefix of s, denoted as s′ ⊑ s, if there exists another
word (configuration) s′′ ∈ S∗(Sω) such that s = s′s′′. For
two natural numbers i ≤ j, [i, j] denotes the set of all integers
between i and j; and for a set S, |S| its cardinality.

A Petri net is a quadruple N = (P, T, Pre, Post), where P
is a finite set of places graphically represented by circles; T is
a finite set of transitions graphically represented by bars; P ∪
T ̸= ∅, P ∩ T = ∅; Pre : P × T → N and Post : P × T → N
are the pre- and post-incidence functions that specify the arcs
directed from places to transitions, and vice versa, where N
stands for the set of natural numbers. The value of Pre or Post
at an arc is graphically represented as the weight of the arc. The
incidence function is defined as C = Post− Pre.

A marking is a mapping M : P → N that assigns to each
place of a Petri net a natural number of tokens, graphically
represented by black dots. For a marking M ∈ NP , a transition
t ∈ T is called enabled at M if M(p) ≥ Pre(p, t) for any
p ∈ P , and is denoted by M [t⟩, where as usual NP denotes
the set of mappings from P to N. An enabled transition t at M
may fire and yield a new making M ′(p) = M(p) + C(p, t)
for all p ∈ P , written as M [t⟩M ′. As usual, we assume that
at each marking and each time step, at most one transition
fires. For a marking M , a sequence t1 . . . tn of transitions is
called enabled at M if t1 is enabled at M , t2 is enabled at the
unique M2 satisfying M [t1⟩M2, . . . , tn is enabled at the unique
Mn−1 satisfying M [t1⟩ · · · [tn−1⟩Mn−1. We write the firing of
t1 . . . tn at M as M [t1 . . . tn⟩ for short, and similarly denote
the firing of t1 . . . tn at M yielding M ′ by M [t1 . . . tn⟩M ′.
T (N,M0) := {s ∈ T ∗|M0[s⟩} is used to denote the set
of transition sequences enabled at M0. Particularly we have
M0[ϵ⟩M0. A pair (N,M0) is called a Petri net system, where
N = (P, T, Pre, Post) is a Petri net, M0 : P → N is
called the initial marking, and the system evolves initially at
M0 as transition sequences fire. Denote the set of reachable
markings of the system by R(N,M0) := {M ∈ NP |∃s ∈
T ∗,M0[s⟩M ′}. For a Petri net system (N,M0), R(N,M0) is
at most countably infinite.

An LPN system is a quadruple (N,M0,Σ, ℓ), where N is a
Petri net, M0 is an initial marking, Σ is an alphabet (a finite set
of labels), and ℓ : T → Σ is a labeling function that assigns
to each transition t ∈ T a symbol of Σ (In (Hack, 1976), such
a labeling function is called “λ-free”). The labeling function
ℓ : T → Σ can be recursively extended to ℓ : T ∗ → Σ∗

as ℓ(st) = ℓ(s)ℓ(t) with s ∈ T ∗ and t ∈ T . Particularly
we let ℓ(ϵ) = ϵ. For an LPN system G = (N,M0,Σ, ℓ),
the language generated by G is denoted by L(G) := {σ ∈
Σ∗|∃s ∈ T ∗,M0[s⟩, ℓ(s) = σ}, i.e., the set of labels of
transition sequences enabled at the initial marking M0. We also
say for each σ ∈ L(G), system G generates σ. For σ ∈ Σω , we
say G generates σ if G generates each prefix of σ.

Note that for an LPN system G = (N,M0,Σ, ℓ), when we
observe a label sequence σ ∈ Σ∗, there may exist at most
finitely many firing transition sequences s ∈ T ∗ such that
ℓ(s) = σ. Denote the set of markings in which the system
can be when observing σ by M(G, σ) := {M ∈ NP |∃s ∈
T ∗,M0[s⟩M, ℓ(s) = σ}, then for each σ ∈ Σ∗, M(G, σ) is
finite.

For an LPN system, for arcs from places to transitions, normally
positive numbers of tokens of places make a transition fire.
However, when the situation that no token of places makes a
transition fire also occurs, the generalized LPN system is called
an LPN system with inhibitor arcs. Formally a Petri net with
inhibitor arcs is a quintuple N ′ = (P, T, Pre, Pre′, Post),
where P and T are also finite sets of places and transitions
such that P ∪ T ̸= ∅ and P ∩ T = ∅, Pre : P × T → N
and Post : P × T → N are still the pre- and post-incidence
functions, Pre′ : P×T → {0, 1} is the inhibitor pre-incidence
function such that Pre(p, t) · Pre′(p, t) = 0 for all p ∈ P and
t ∈ T , guaranteeing that there exists at most one of a normal
arc and an inhibitor arc from p to t. Here a transition t ∈ T is
enabled at a marking M ∈ NP if and only if M(p) ≥ Pre(p, t)
for any p ∈ P satisfying Pre(p, t) > 0 and M(p) = 0
for any p ∈ P satisfying Pre′(p, t) > 0. The firing of a
transition t ∈ T at a marking M ∈ NP yields a marking
M ′(p) = M(p)+Post(p, t)−Pre(p, t) if Pre′(p, t) = 0 and
M ′(p) = Post(p, t) if Pre′(p, t) > 0, where p ∈ P and t ∈ T .
Similarly, an LPN system with inhibitor arcs is a quadruple
G′ = (N ′,M0,Σ, ℓ), where N ′ = (P, T, Pre, Pre′, Post) is
a Petri net with inhibitor arcs, M0 ∈ NP is an initial marking,
Σ is again an alphabet, and ℓ : T → Σ is again a labeling
function. The set T (N ′,M0) of transition sequences enabled at
M0, the R(N ′,M0) of reachable markings, the language L(G′)
generated by G′, and the set M(G′, σ) of markings in which
the system can be when observing σ ∈ Σ∗, are defined in an
analogue way as those for LPN systems.

In what follows, we will prove some undecidable results for
detectability-related problems for LPN systems (with inhibitor
arcs). We obtain these results by reducing a classical undecid-
able problem on the language equivalence of LPN systems as
shown below to the problems under consideration.
Proposition 2.1. (Hack, 1976, Theorem 8.2) It is undecidable
to verify for two given LPN systems Gi = (Ni,M

i
0,Σ, ℓi),

i = 1, 2, whether one has L(G1) = L(G2).

3. MAIN RESULTS

Consider an LPN system G′ = (N ′,M0,Σ, ℓ) with inhibitor
arcs, where N ′ = (P, T, Pre, Pre′, Post) is a Petri net with
inhibitor arcs. The concept of weak detectability can be intu-
itively described as whether there exists a label sequence such
that when observing the label sequence, the markings of G′ are
uniquely determined after a time step. It is formulated as below.
Definition 1. Consider an LPN system G′ = (N ′ = (P, T, Pre,
Pre′, Post),M0,Σ, ℓ) with inhibitor arcs. System G′ is called
weakly detectable if there exists a label sequence σ ∈ Σω such
that for some positive integer k, |M(G′, σ′)| = 1 for any prefix
σ′ of σ satisfying |σ′| ≥ k.

Sometimes, we do not need to determine the marking of an LPN
system, but only need to know whether the marking belongs to
some prescribed subset of reachable markings, we call such a
property weak approximate detectability, which is formulated
as below.
Definition 2. Consider an LPN system G′ = (N ′ = (P, T, Pre,
Pre′, Post),M0,Σ, ℓ) with inhibitor arcs. Given a positive in-
teger n > 1 and a partition {R1, . . . , Rn} of the set R(N ′,M0)
of reachable markings, system G′ is called weakly approx-
imately detectable with respect to partition {R1, . . . , Rn} if
there exists a label sequence σ ∈ Σω such that for some
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positive integer k, for any prefix σ′ of σ satisfying |σ′| ≥ k,
∅ ̸= M(G′, σ′) ⊆ Ri for some i ∈ [1, n].

For weak detectability of LPN systems with inhibitor arcs, we
have the following result.
Theorem 3.1. It is undecidable to verify whether a given LPN
system with inhibitor arcs is weakly detectable.

Proof. We prove this result by reducing the language equiva-
lence problem of LPN systems (Proposition 2.1) to the weak
detectability problem of LPN systems with inhibitor arcs.

Arbitrarily given two LPN systems Gi = (Ni,M
i
0,Σ, ℓi),

where Ni = (Pi, Ti, P rei, Posti), i = 1, 2, P1 ∩ P2 = ∅,
T1 ∩ T2 = ∅, we next construct a new LPN system G with
inhibitor arcs from G1 and G2 by adding additional places,
transitions, and arcs, and prove that L(G1) = L(G2) if and
only if G is not weakly detectable.

G is specified as follows: (1) Add 5 new places p0, p11, p
2
1, p

1
2, p

2
2

to G1 and G2, and initially p0 has 1 token, and the other 4 places
have no token. (2) Add 6 new transitions t10, t

2
0, t

1
1, t

2
1, t1, t2. (3)

Add new arcs p0 → ti0 → pi1 → ti1 → pi2 → ti → pi2,
i = 1, 2. (4) For each transition t ∈ Ti, add arcs pi1 → t → pi1,
i = 1, 2. (5) For each place p ∈ Pi, add inhibitor arc p ⊣ ti,
i = 1, 2. (6) For each place p ∈ Pi, add transition tp and arcs
p → tp → pi2 → tp, i = 1, 2. (7) All new added transitions are
labeled by σG /∈ Σ. All new added arcs and inhibitor arcs are
with weight 1. See Fig. 1 as an example.

p0

t10

t20

t1

p̄1

p̄2

t̄1

t̄2

tp̄2

tp̄1

p12

p11 t11

t2

p̂

t̂
tp̂

p22

p21
t21

G1

G2

Fig. 1. Example for the reduction in the proof of Theorem 3.1.

For LPN system G with inhibitor arcs, initially only transition
t10 or t20 can fire. After t10 (t20) fires, the unique token in place
p0 moves to place p11 (p21), initializing system G1 (G2). While
G1 (G2) is running, only transition t11 (t21) outside T1 ∪ T2

can fire. The firing of t11 (t21) moves the token in place p11
(p21) to place p12 (p22), and stops system G1 (G2) from running,
yielding that G1 (G2) will never run again, and for each p ∈ P1

(p ∈ P2), transition tp fires repetitively until there exists no
token in place p. After all places in P1 (P2) become empty, only
transition t1 (t2) can fire, and can fire repetitively forever. All
in all, all possible infinite transition sequences fired by system
G are of the form t10st

1
1s

′tω1 , t10s
′′, t20rt

2
1r

′tω2 , or t20r
′′, where

s ∈ (T1)
∗, s′ ∈ {tp|p ∈ P1}∗, s′′ ∈ (T1)

ω , r ∈ (T2)
∗,

r′ ∈ {tp|p ∈ P2}∗, r′′ ∈ (T2)
ω. Note that for some systems

G1 and G2, the corresponding system G never fires t10s
′′ or

t20r
′′ as above, e.g., when L(G1) ∪ L(G2) is finite; but for all

G1 and G2, the corresponding G fires t10st
1
1s

′tω1 and t20rt
2
1r

′tω2
as above.

If L(G1) ̸= L(G2), without loss of generality, we assume
that there exists σ ∈ L(G1) \ L(G2). Then when system G
generates σGσ(σG)

ω , it only fires t10st
1
1s

′(t1)
ω , where s ∈

(T1)
∗, ℓG(s) = σ, s′ ∈ {tp|p ∈ P1}∗, |s′| =

∑
p∈P1

M(p),
M ∈ NP1 is the marking satisfying M1

0 [s⟩M uniquely deter-
mined by s. When we observe prefix σGσ(σG)

k of σGσ(σG)
ω

for any integer k > K := max{
∑

p∈P1
M ′(p)|∃s̃ ∈

(T1)
∗, ℓG(s̃) = σ,M1

0 [s̃⟩M ′} (note that {s̃ ∈ (T1)
∗|ℓG(s̃) =

σ,M1
0 [s̃⟩} is a finite set, hence K is a natural number), the set

M(G, σGσ(σG)
k) of reachable markings of system G after

observing σGσ(σG)
k is a singleton, and its unique element

MG ∈ NPG satisfies that MG(p0) = MG(p
1
1) = MG(p

2
1) =

MG(p
2
2) = MG(p) = 0 for any p ∈ P1, MG(p

1
2) = 1,

MG|P2 = M2
0 . Hence system G is weakly detectable.

If L(G1) = L(G2), then system G may generate only config-
urations σGσ

′ or σGσ(σG)
ω , where σ′ ∈ Σω, σ ∈ L(G1). For

the former case, for any positive integer k and any k length
prefix σ′′ of σ′, there exist firing sequences s ∈ (T1)

∗ of
system G1 and r ∈ (T2)

∗ of system G2 such that ℓG(s) =
ℓG(r) = σ′′. Then M(G, σ′′) includes a marking MG ∈ NPG

satisfying MG(p
1
1) = 1 and MG(p

2
1) = 0 and also a marking

M ′
G ∈ NPG satisfying M ′

G(p
1
1) = 0 and M ′

G(p
2
1) = 1. That

is, M(G, σ′′) is not a singleton. For the latter case, when
we observe σGσ(σG)

k, where k is a sufficiently large natu-
ral number, we have G may fire both t10st

1
1s

′(t1)
k−1−|s′| and

t20rt
2
1r

′(t2)
k−1−|r′|, where s ∈ (T1)

∗, r ∈ (T2)
∗, ℓG(s) =

ℓG(r) = σ, s′ ∈ {tp|p ∈ P1}∗, r′ ∈ {tp|p ∈ P2}∗,
|s′| ≤ k − 1, |r′| ≤ k − 1. Then we obtain two markings
MG,M

′
G ∈ NPG satisfying that MG

0 [t10st
1
1s

′(t1)
k−1−|s′|⟩MG

and MG
0 [t20rt

2
1r

′(t2)
k−1−|r′|⟩M ′

G, MG(p
1
2) = 1, MG(p

2
2) = 0,

M ′
G(p

1
2) = 0, M ′

G(p
2
2) = 1. That is, M(G, σGσ(σG)

k) is not
a singleton for any sufficiently large k. We have checked all
label sequences generated by system G, hence G is not weakly
detectable, which completes the proof.

For weakly approximate detectability of LPN systems, the
following result holds.
Theorem 3.2. Let n > 1 be a positive integer. It is undecidable
to verify for an LPN system and a partition {R1, . . . , Rn} of
the set of its reachable markings, whether the system is weakly
approximately detectable with respect to {R1, . . . , Rn}.

Proof. We prove this result also by reducing the language
equivalence problem of LPN systems (Proposition 2.1) to the
weak approximate detectability problem of LPN systems.

Let l ≥ 3 be an integer. Arbitrarily given two LPN systems
Gi = (Ni,M

i
0,Σ, ℓi), where Ni = (Pi, Ti, P rei, Posti),

i = 1, 2, P1 ∩ P2 = ∅, T1 ∩ T2 = ∅, we next construct
a new LPN system G = (NG,M

G
0 ,Σ ∪ {σG}, ℓG) from

G1 and G2. G is specified as follows: (1) Add l + 2 places
p0, p

1
1, p

2
1, p2, . . . , pl to G1 and G2, where initially p0 has one

token, and all the other places have no token. (2) Add l + 3
transitions t10, t

2
0, t

1
1, t

2
1, t2, . . . , tl, and arcs p0 → t10 → p11 →

t11 → p2 → t2 → · · · → pl → tl → p2, and p0 → t20 →
p21 → t21 → pl, where these transitions are labeled by σG /∈ Σ.
(3) For each transition t ∈ Ti, add arcs pi1 → t → pi1, i = 1, 2.
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positive integer k, for any prefix σ′ of σ satisfying |σ′| ≥ k,
∅ ̸= M(G′, σ′) ⊆ Ri for some i ∈ [1, n].

For weak detectability of LPN systems with inhibitor arcs, we
have the following result.
Theorem 3.1. It is undecidable to verify whether a given LPN
system with inhibitor arcs is weakly detectable.

Proof. We prove this result by reducing the language equiva-
lence problem of LPN systems (Proposition 2.1) to the weak
detectability problem of LPN systems with inhibitor arcs.

Arbitrarily given two LPN systems Gi = (Ni,M
i
0,Σ, ℓi),

where Ni = (Pi, Ti, P rei, Posti), i = 1, 2, P1 ∩ P2 = ∅,
T1 ∩ T2 = ∅, we next construct a new LPN system G with
inhibitor arcs from G1 and G2 by adding additional places,
transitions, and arcs, and prove that L(G1) = L(G2) if and
only if G is not weakly detectable.

G is specified as follows: (1) Add 5 new places p0, p11, p
2
1, p

1
2, p

2
2

to G1 and G2, and initially p0 has 1 token, and the other 4 places
have no token. (2) Add 6 new transitions t10, t

2
0, t

1
1, t

2
1, t1, t2. (3)

Add new arcs p0 → ti0 → pi1 → ti1 → pi2 → ti → pi2,
i = 1, 2. (4) For each transition t ∈ Ti, add arcs pi1 → t → pi1,
i = 1, 2. (5) For each place p ∈ Pi, add inhibitor arc p ⊣ ti,
i = 1, 2. (6) For each place p ∈ Pi, add transition tp and arcs
p → tp → pi2 → tp, i = 1, 2. (7) All new added transitions are
labeled by σG /∈ Σ. All new added arcs and inhibitor arcs are
with weight 1. See Fig. 1 as an example.

p0

t10

t20

t1

p̄1

p̄2

t̄1

t̄2

tp̄2

tp̄1

p12

p11 t11

t2

p̂

t̂
tp̂

p22

p21
t21

G1

G2

Fig. 1. Example for the reduction in the proof of Theorem 3.1.

For LPN system G with inhibitor arcs, initially only transition
t10 or t20 can fire. After t10 (t20) fires, the unique token in place
p0 moves to place p11 (p21), initializing system G1 (G2). While
G1 (G2) is running, only transition t11 (t21) outside T1 ∪ T2

can fire. The firing of t11 (t21) moves the token in place p11
(p21) to place p12 (p22), and stops system G1 (G2) from running,
yielding that G1 (G2) will never run again, and for each p ∈ P1

(p ∈ P2), transition tp fires repetitively until there exists no
token in place p. After all places in P1 (P2) become empty, only
transition t1 (t2) can fire, and can fire repetitively forever. All
in all, all possible infinite transition sequences fired by system
G are of the form t10st

1
1s

′tω1 , t10s
′′, t20rt

2
1r

′tω2 , or t20r
′′, where

s ∈ (T1)
∗, s′ ∈ {tp|p ∈ P1}∗, s′′ ∈ (T1)

ω , r ∈ (T2)
∗,

r′ ∈ {tp|p ∈ P2}∗, r′′ ∈ (T2)
ω. Note that for some systems

G1 and G2, the corresponding system G never fires t10s
′′ or

t20r
′′ as above, e.g., when L(G1) ∪ L(G2) is finite; but for all

G1 and G2, the corresponding G fires t10st
1
1s

′tω1 and t20rt
2
1r

′tω2
as above.

If L(G1) ̸= L(G2), without loss of generality, we assume
that there exists σ ∈ L(G1) \ L(G2). Then when system G
generates σGσ(σG)

ω , it only fires t10st
1
1s

′(t1)
ω , where s ∈

(T1)
∗, ℓG(s) = σ, s′ ∈ {tp|p ∈ P1}∗, |s′| =

∑
p∈P1

M(p),
M ∈ NP1 is the marking satisfying M1

0 [s⟩M uniquely deter-
mined by s. When we observe prefix σGσ(σG)

k of σGσ(σG)
ω

for any integer k > K := max{
∑

p∈P1
M ′(p)|∃s̃ ∈

(T1)
∗, ℓG(s̃) = σ,M1

0 [s̃⟩M ′} (note that {s̃ ∈ (T1)
∗|ℓG(s̃) =

σ,M1
0 [s̃⟩} is a finite set, hence K is a natural number), the set

M(G, σGσ(σG)
k) of reachable markings of system G after

observing σGσ(σG)
k is a singleton, and its unique element

MG ∈ NPG satisfies that MG(p0) = MG(p
1
1) = MG(p

2
1) =

MG(p
2
2) = MG(p) = 0 for any p ∈ P1, MG(p

1
2) = 1,

MG|P2 = M2
0 . Hence system G is weakly detectable.

If L(G1) = L(G2), then system G may generate only config-
urations σGσ

′ or σGσ(σG)
ω , where σ′ ∈ Σω, σ ∈ L(G1). For

the former case, for any positive integer k and any k length
prefix σ′′ of σ′, there exist firing sequences s ∈ (T1)

∗ of
system G1 and r ∈ (T2)

∗ of system G2 such that ℓG(s) =
ℓG(r) = σ′′. Then M(G, σ′′) includes a marking MG ∈ NPG

satisfying MG(p
1
1) = 1 and MG(p

2
1) = 0 and also a marking

M ′
G ∈ NPG satisfying M ′

G(p
1
1) = 0 and M ′

G(p
2
1) = 1. That

is, M(G, σ′′) is not a singleton. For the latter case, when
we observe σGσ(σG)

k, where k is a sufficiently large natu-
ral number, we have G may fire both t10st

1
1s

′(t1)
k−1−|s′| and

t20rt
2
1r

′(t2)
k−1−|r′|, where s ∈ (T1)

∗, r ∈ (T2)
∗, ℓG(s) =

ℓG(r) = σ, s′ ∈ {tp|p ∈ P1}∗, r′ ∈ {tp|p ∈ P2}∗,
|s′| ≤ k − 1, |r′| ≤ k − 1. Then we obtain two markings
MG,M

′
G ∈ NPG satisfying that MG

0 [t10st
1
1s

′(t1)
k−1−|s′|⟩MG

and MG
0 [t20rt

2
1r

′(t2)
k−1−|r′|⟩M ′

G, MG(p
1
2) = 1, MG(p

2
2) = 0,

M ′
G(p

1
2) = 0, M ′

G(p
2
2) = 1. That is, M(G, σGσ(σG)

k) is not
a singleton for any sufficiently large k. We have checked all
label sequences generated by system G, hence G is not weakly
detectable, which completes the proof.

For weakly approximate detectability of LPN systems, the
following result holds.
Theorem 3.2. Let n > 1 be a positive integer. It is undecidable
to verify for an LPN system and a partition {R1, . . . , Rn} of
the set of its reachable markings, whether the system is weakly
approximately detectable with respect to {R1, . . . , Rn}.

Proof. We prove this result also by reducing the language
equivalence problem of LPN systems (Proposition 2.1) to the
weak approximate detectability problem of LPN systems.

Let l ≥ 3 be an integer. Arbitrarily given two LPN systems
Gi = (Ni,M

i
0,Σ, ℓi), where Ni = (Pi, Ti, P rei, Posti),

i = 1, 2, P1 ∩ P2 = ∅, T1 ∩ T2 = ∅, we next construct
a new LPN system G = (NG,M

G
0 ,Σ ∪ {σG}, ℓG) from

G1 and G2. G is specified as follows: (1) Add l + 2 places
p0, p

1
1, p

2
1, p2, . . . , pl to G1 and G2, where initially p0 has one

token, and all the other places have no token. (2) Add l + 3
transitions t10, t

2
0, t

1
1, t

2
1, t2, . . . , tl, and arcs p0 → t10 → p11 →

t11 → p2 → t2 → · · · → pl → tl → p2, and p0 → t20 →
p21 → t21 → pl, where these transitions are labeled by σG /∈ Σ.
(3) For each transition t ∈ Ti, add arcs pi1 → t → pi1, i = 1, 2.
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(4) All these new added arcs are with weight 1. See Fig. 2 as an
example.

p0

t10

t20

p̄
t̄

p2

p11 t11

p̂ t̂ pl

p21
t21

G1

G2

tl

t2

p3

. . .

Fig. 2. Example for the reduction in the proof of Theorem 3.2.

For LPN system G, initially only transition t10 or t20 can fire.
After t10 (t20) fires, the unique token in place p0 moves to
place p11 (p21), initializing system G1 (G2). While G1 (G2) is
running, only transition t11 (t21) outside T1 ∪ T2 can fire. The
firing of t11 (t21) moves the token in place p11 (p21) to place p2
(pl), and terminates the running of system G1 (G2), yielding
that the token in p2 (pl) can move along the direction p2 →
· · · → pl → p2 periodically forever, but G1 (G2) will never
run again. Hence system G may fire only infinite transition
sequences t10st

1
1t2 . . . tlt2 . . . tl . . . , t10s

′, t20rt
2
1tlt2 . . . tlt2 . . . ,

or t20r
′, where s ∈ (T1)

∗, s′ ∈ (T1)
ω , r ∈ (T2)

∗, r′ ∈ (T2)
ω.

So system G can generate only configurations σGσ(σG)
ω or

σGσ
′ where σ ∈ Σ∗, σ′ ∈ Σω . Note that for some systems

G1 and G2, the corresponding system G never fires t10s
′ or t20r

′

as above, e.g., when L(G1) ∪ L(G2) is finite; but for all G1

and G2, the corresponding G fires t10st
1
1t2 . . . tlt2 . . . tl . . . and

t20rt
2
1tlt2 . . . tlt2 . . . as above.

n > 3:

Let l = n − 1. We partition the set R(NG,M
G
0 ) of reachable

markings of system G as follows:

R1 ={M ∈ NPG |M(p0) or M(p11) = 1,

M(p21) = M(pj) = 0, j ∈ [2, l]}
∩ R(NG,M

G
0 ),

Ri ={M ∈ NPG |M(p0) = M(p11) = M(p21) = 0,

M(pi) = 1,M(pj) = 0, j ∈ [2, l] \ {i}}
∩ R(NG,M

G
0 ), i ∈ [2, l],

Rl+1 ={M ∈ NPG |M(p21) = 1,

M(p0) = M(p11) = M(pj) = 0, j ∈ [2, l]}
∩ R(NG,M

G
0 ).

(1)

That is, ∪l+1
i=1Ri = R(NG,M

G
0 ), and Ri ∩ Rj = ∅ for all

different i, j ∈ [1, l + 1].

If L(G1) ̸= L(G2), without loss of generality, we assume
that there exists σ ∈ L(G1) \ L(G2). Then when system G
generates configuration σGσ(σG)

ω, it can fire only transition
sequences t10st

1
1t2 . . . tlt2 . . . tl . . . , where s ∈ (T1)

∗, ℓG(s) =
σ. It can be directly seen for each positive integer k, ∅ ̸=
M(G, σGσ(σG)

k) ⊆ R(k−1) mod (l−1)+2, where (k − 1)
mod (l−1) means the remainder of k−1 divided by l−1. That

is, system G is weakly approximately detectable with respect to
partition (1).

Next we assume that L(G1) = L(G2). Note that system
G generates only configurations σGσ

′ or σGσ(σG)
ω, where

σ′ ∈ Σω , σ ∈ Σ∗. For the former case, for each prefix σ′′

of σ′, there exist firing sequences s ∈ (T1)
∗ of system G1

and r ∈ (T2)
∗ of system G2 such that ℓG(s) = ℓG(r) =

σ′′, and markings MG,M
′
G ∈ NPG such that MG

0 [t10s⟩MG,
MG

0 [t20r⟩M ′
G, MG(p

1
1) = 1, MG(p

2
1) = 0, M ′

G(p
1
1) = 0,

and M ′
G(p

2
1) = 1, then we have M(G, σ′′) ∩ R1 ̸= ∅ and

M(G, σ′′) ∩Rl+1 ̸= ∅. For the latter case, arbitrarily chosen a
prefix σGσ(σG)

k of σGσ(σG)
ω , where k is an arbitrary positive

integer, we have there exist firing sequences s ∈ (T1)
∗ of

system G1 and r ∈ (T2)
∗ of system G2 such that ℓG(s) =

ℓG(r) = σ and system G can fire both t10ss
′ and t20rr

′,
where s′ and r′ are k length prefixes of t2 . . . tlt2 . . . tl . . . and
tlt2 . . . tlt2 . . . , respectively. Since G will fire both t10ss

′ and
t20rr

′, we have M(G, σGσ(σG)
k) ∩ R(k−1) mod (l−1)+2 ̸= ∅

and M(G, σGσ(σG)
k) ∩ R(k−2) mod (l−1)+2 ̸= ∅. Hence

for each positive integer k, M(G, σGσ(σG)
k) intersects both

R(k−1) mod (l−1)+2 and R(k−2) mod (l−1)+2, where (k − 1)
mod (l − 1) ̸= (k − 2) mod (l − 1). We have checked
all label sequences generated by G, hence G is not weakly
approximately detectable with respect to partition (1).

Hence L(G1) ̸= L(G2) if and only if G is weakly approxi-
mately detectable with respect to partition (1).

n = 3:

Let l = 3. We partition the set R(NG,M
G
0 ) of reachable

markings of system G as follows:

R1 ={M ∈ NPG |M(p0) or M(p11) = 1,

M(p21) = M(p2) = M(p3) = 0}
∩ R(NG,M

G
0 ),

R2 ={M ∈ NPG |M(p2) = 1,

M(p0) = M(p11) = M(p21) = M(p3) = 0}
∩ R(NG,M

G
0 ),

R3 ={M ∈ NPG |M(p21) or M(p3) = 1,

M(p0) = M(p11) = M(p2) = 0}
∩ R(NG,M

G
0 ).

(2)

Similar to the case n > 3, we also have that L(G1) ̸= L(G2) if
and only if system G is weakly approximately detectable with
respect to partition (2).

n = 2:

Let l = 3. We partition the set R(NG,M
G
0 ) of reachable

markings of system G as follows:

R1 ={M ∈ NPG |M(p0) or M(p11) or M(p2) = 1,

M(p21) = M(p3) = 0}
∩ R(NG,M

G
0 ),

R2 ={M ∈ NPG |M(p21) or M(p3) = 1,

M(p0) = M(p11) = M(p2) = 0}
∩ R(NG,M

G
0 ).

(3)

Similarly we also have that L(G1) ̸= L(G2) if and only if
system G is weakly approximately detectable with respect to
partition (3), which completes the proof.
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4. CONCLUSION

In this paper, we proved that the problems of deciding weak
detectability of LPN systems with inhibitor arcs and weak ap-
proximate detectability of LPN systems are both undecidable.
There are many related problems that are worthy of further
study, e.g., decidability of weak detectability of LPN systems,
formulation and verification of strong detectability of LPN sys-
tems. It is not difficult to obtain that the problem of deciding
weak detectability of bounded LPN systems is decidable, so it
is interesting to design fast verification algorithms.
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