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Abstract: We investigate optimal control problems for a class of non-stationary hybrid

systems with autonomous location transitions. Using the Lagrange approach and the

technique of the reduced gradient, we derive necessary optimality conditions for the

considered class of problems. These optimality conditions are closely related to a

variant of the Hybrid Maximum Principle and can be used for constructive optimization

algorithms. Copyright © 2006 IFAC
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1. INTRODUCTION

The optimal control of hybrid systems has become

a new focus of nonlinear control theory (see e.g.,

[4,5,6,12,13,17,18]). Hybrid control systems are math-

ematical modes of heterogeneous systems consisting

of a continuous part, a finite number of continu-

ous controllers and a discrete supervisor. For a hy-

brid optimal control problem, the main tool toward

the construction of optimal trajectories is the Hybrid

Maximum Principle [6,12,13,17,18]. This result gen-

eralizes the classical Pontryagin Maximum Principle

[3,10,15]. It is well-known that the standard proof of

the Pontryagin Maximum Principle is based on the

techniques of ”needle variations” (see e.g., [10,15]).

The character of a general hybrid optimal control

problem changes the possibility of using the standard

needle variations [13]. Therefore, a variant of the Hy-

brid Maximum Principle for a hybrid optimal control

problem can be proved only under some restrictive

assumptions (see e.g., [12,13,17,18]). In effect, these

assumptions guarantee that the classical needle vari-

ations are still admissible variations. Furthermore, in

the context of a practical implementation of the Hy-

brid Maximum Principle we need to construct a si-

multaneous solution of a large-dimensional boundary-

value problem and of a family of sophisticated aux-

iliary minimization problems. This is a complicated

problem, especially in the case of many-dimensional

systems with a lot of switchings.

In this paper, we consider a class of non-stationary hy-

brid control systems with autonomous (uncontrolled)

location transitions. For general theory of hybrid sys-

tems and basic definitions we refer to, e.g., [2,11,16].

Using an approach based on Lagrange-type techniques

and on reduced gradients, we obtain a set of first-order

necessary optimality conditions for the above class of

nonlinear hybrid optimal control problems. The ex-

plicit computation of the corresponding reduced gradi-

ents provides also a basis for applications of some ef-
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fective gradient-based optimization algorithms to the

given hybrid optimal control problems.

The remainder of the paper is organized as follows.

Section 2 contains the initial hybrid optimal control

problem and some basic facts. Section 3 is devoted to

the concepts of reduced gradients for optimal control

problems in abstract and specific hybrid settings. In

Section 4 we present the necessary optimality con-

ditions and propose a gradient-based computational

approach to the initial problem. Section 5 summarizes

the article.

2. PROBLEM FORMULATION

We start by introducing a variant of the standard

definition of hybrid systems [12,13,17,18].

Definition 1. A hybrid system is a 7-tuple

{Q,M,U, F,U, I,S},

where

• Q is a finite set of discrete states (called loca-

tions);

• M = {Mq}q∈Q is a family of smooth manifolds,

indexed by Q;

• U ⊆ Rm is a set of admissible control input

values (called control set);

• F = { fq}, q ∈ Q is a family of maps

fq : [0, 1] × Mq × U → T Mq,

where T Mq is the tangent bundle of Mq (see e.g.,

[7,10]);

• U is the set of all admissible control functions;

• I = {Iq} is a family of subintervals of [0, 1] such

that the length of each Iq is less than 1;

• S is a subset of Ξ, where

Ξ := {(q, x, q′, x′) : q, q′ ∈ Q, x ∈ Mq, x
′ ∈ Mq′ }

A hybrid system from Definition 1 is defined on the

time-interval [0, 1]. Note that in contrast to the gen-

eral definition of a hybrid system [12,13,17,18], the

control set U from Definition 1 is the same for all

locations. Moreover, in the sense of this definition the

setU is also independent of a location. Let us assume

that U is a compact set and

U := {u(·) ∈ L2
m([0, 1]) : u(t) ∈ U a.e. on [0, 1]},

where L2
m([0, 1]) is the standard Lebesgue space of all

square-integrable functions u : [0, 1] → Rm. We now

introduce some additional hypothesis for the vector

fields fq, q ∈ Q:

• all functions fq(t, ·, ·) from F are differentiable,

• fq, ∂ fq/∂x, ∂ fq/∂u are continuous and there

exist constants Cq < ∞ such that

||
∂

∂x
fq(t, x, u)|| ≤ Cq,

q ∈ Q, (t, x, u) ∈ [0, 1] × Mq × U.

For q, q′ ∈ Q one can also define the switching set

S q,q′ := {(x, x′) ∈ Mq × Mq′ : (q, x, q′x′) ∈ S}.

from location q to location q′. The intervals Iq, q ∈ Q

indicate the lengths of time intervals on which the

system can stay in location q. We say that a location

switching from q to q′ occurs at a switching time

tswitch ∈ [0, 1]. We now consider a hybrid system with

r ∈ N switching times {ti}, i = 1, ..., r, where

0 = t0 < t1 < ... < tr < tr+1 = 1.

Note that the sequence of switching times {ti} is not

defined a priory. A hybrid control system remains in

location qi ∈ Q for all t ∈ [ti−1, ti[, i = 1, ..., r + 1. Let

ti − ti−1 ∈ Iqi
for all i = 1, ..., r + 1. A hybrid system

(in the sense of Definition 1) that satisfies the above

assumptions is denoted byHS .

Definition 2. Let u(·) ∈ U be an admissible control

for a hybrid control system HS . Then a continuous

trajectory ofHS is an absolutely continuous function

x : [0, 1]→
⋃

q∈Q

Mq

such that x(0) = x0 ∈ Mq1
and

• ẋ(t) = fqi
(t, x(t), u(t)) for almost all t ∈ [ti−1, ti]

and all i = 1, ..., r + 1;

• the switching condition (x(ti), x(ti+1)) ∈ S qi,qi+1

holds if i = 1, ..., r.

The vector R := (q1, ...qr+1)T is a discrete trajectory

of the hybrid control systemHS .

Definition 2 describe the dynamic of a hybrid control

system HS . Since x(·) is an absolutely continuous

function, Definition 2 describe a class of hybrid sys-

tems without impulse components of the continuous

trajectories. Therefore, the corresponding switching

sets S q,q′ (and S qi,qi+1
) are defined for x = x′ (for

x(ti) = x(ti+1)).

Under the above assumptions for the given family of

vector fields F, for each admissible control u(·) ∈

U and for every interval [ti−1, ti] (for every location

qi ∈ R) there exists a unique absolutely continuous

solution of the corresponding differential equation.

This means that for each u(·) ∈ U we have a unique

absolute continuous trajectory of HS . Moreover, the

switching times {ti} and the discrete trajectory R for a

hybrid control system HS are also uniquely defined.

Therefore, it is reasonable to introduce the following

concept.

Definition 3. Let HS be a hybrid control system as

defined above. For an admissible control u(·) ∈ U,

the triplet Xu := (τ, x(·),R), where τ is the set of the

corresponding switching times {ti}, x(·) and R are the

corresponding continuous and discrete trajectories, is

called hybrid trajectory ofHS .
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Let φ : Rn → R be a continuously differentiable func-

tion. Given a hybrid control systemHS we denote the

following Mayer-type hybrid optimal control problem

by OCP:

minimize φ(x(1))

subject to ẋ(t) = fqi
(t, x(t), u(t)) a.e. on[ti−1, ti]

i = 1, ..., r + 1, x(0) = x0 ∈ Mq1
, u(·) ∈ U.

(1)

Evidently, (1) is the problem of minimizing the Mayer

cost functional J(X) := φ(x(1)) over all hybrid trajec-

tories X of HS . Note that we study OCP (1) in the

absence of target (endpoint) and state constraints. For

necessary optimality conditions for (1) in the form of

a Hybrid Maximum Principle we refer to [5,17].

3. REPRESENTATION OF FUNCTIONAL

DERIVATIVES

3.1 The General Gradient Formula

Let us first examine an abstract optimal control prob-

lem (the generalization of (1)) which involves a con-

trol variable v along with a state variable ξ

minimize T (ξ, v)

subject to P(ξ, v) = 0,

(ξ, v) ∈ Ω,

(2)

where T : X×Y → R is a cost functional, X,Y are real

Banach and Hilbert spaces and

P : X × Y → X

is a given mapping. By Ω we denote here a nonempty

subset of X × Y .

Definition 4. We say that an admissible pair

(ξ̂, v̂) ∈ Ω̃ := {(ξ, v) ∈ Q
∣

∣

∣ P(ξ, v) = 0}

is a local solution of (2) if

T (ξ̂, v̂) ≤ T (ξ, v) ∀(ξ, v) ∈ W(ξ̂,v̂) ⊂ Ω,

where W(ξ̂,v̂) ⊂ X × Y is a neighborhood of (ξ̂, v̂).

All derivatives considered in this papers are Fréchet

derivatives. We assume that the mappings T and P are

continuously differentiable and that the state equation

P(ξ, v) = 0 can be solved with respect to ξ, i.e.

ξ = ω(v),

where ω : Y → X is a differentiable function. In

this case the functional T (ξ, v) can be represented as

a functional depending only on v, namely,

T (ξ, v) = T (ω(v), v) = T̃ (v).

Note that the introduced abstract optimal control prob-

lem (2) is of primary importance in many applications.

Not only the hybrid optimal control problem (1) but

also an ODE- and a PDE-optimal control problem or

an optimal control problem with integral equations can

also be formulated (in various ways) as an abstract

problem (2). Moreover, a usual finite-dimensional ap-

proximation of an infinite-dimensional OCP has the

form of the minimization problem (2). In the above

cases the condition P(ξ, v) = 0 represents the corre-

sponding ”state equation” of a specific optimal con-

trol problem. Assume that the abstract problem (2) is

regular (see [10]). Define the Lagrangian of problem

(2)

L(ξ, v, p) := T (ξ, v) + 〈p, P(ξ, v)〉X ,

where p ∈ X∗ and 〈p, ·〉X : X → R. Here X∗ is

the (topological) dual space to X. For the generalized

Lagrange Multiplier Rule see e.g., [10,1]. We use the

standard notation

Tξ, Tv, Pξ, Pv, Lξ, Lp, Lu

for the partial derivatives of the functions T, P and L.

Moreover, we introduce the adjoint operators

T ∗ξ , T ∗v , P∗ξ, P
∗
v, L

∗
ξ, L

∗
p, L

∗
u

to the corresponding derivatives (linear operators) and

also consider the adjoint operator ∇T̃ ∗(v) to ∇T̃ (v).

In the context of (2) we now formulate an immediate

consequence of the above solvability assumption for

the state equation P(ξ, v) = 0. Note that a usual solv-

ability criterion for this follows from an appropriate

variant of the Implicit Function Theorem [7,1].

Theorem 5. Let T and P be continuously Fréchet dif-

ferentiable and let the state equation in (2) be solvable.

Assume that there exists the inverse operator

(P∗ξ)
−1 ∈ L((X∗ × Y∗), X∗)

to Pξ. Then the gradient ∇T̃ ∗(v) can be found by

solving the following equations

P(ξ, v) = L∗p(ξ, v, p) = 0,

T ∗ξ (ξ, v) + P∗ξ(ξ, v)p = L∗ξ(ξ, v, p) = 0,

∇T̃ ∗(v) = T ∗v (ξ, v) + P∗v(ξ, v)p = L∗v(ξ, v, p).

(3)

Let us sketch the proof of Theorem 5. Differentiating

the functional T̃ and state equation in (2) we obtain

Pξ(ξ, v)∇ω(v) + Pv(ξ, v) = 0,

∇T̃ (v) = Tv(ξ, v) + Tξ(ξ, v)∇ω(v).

The existence of (P∗
ξ
)−1 implies the formula

∇ω(v) = −(Pξ)
−1(ξ, v)Pv(ξ, v).

Hence

∇T̃ (v) = Tv(ξ, v) − Tξ(ξ, v)(Pξ)
−1(ξ, v)Pv(ξ, v),

and

∇T̃ ∗(v) = T ∗v (ξ, v) − P∗v(ξ, v)(P∗ξ)
−1(ξ, v)T ∗ξ (ξ, v). (4)

On the other hand, we can calculate p from the second

(adjoint) equation in (3) and substitute it to the third

(gradient) equation. In this manner we also obtain

the given relation (4). Note that a related result was

also obtained in [19] for classical optimal control

problems.
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3.2 Reduced Gradients for Hybrid Optimal Control

Problems

Consider a hybrid control system HS . For an ad-

missible control function u(·) ∈ U we obtain the

corresponding hybrid trajectory Xu. For every interval

[ti−1, ti] from τ we can define the characteristic func-

tion of [ti−1, ti]

β[ti−1,ti)(t) =















1 if t ∈ [ti−1, ti)

0 otherwise.

Using the introduced characteristic functions, we

rewrite the state differential equations from Definition

2 for the continuous trajectory x(·) in the following

form

ẋ(t) =

r+1
∑

i=1

β[ti−1,ti)(t) fqi
(t, x(t), u(t)), (5)

where x(0) = x0. Under the above assumptions for

the family of vector fields F, the right-hand side of

the obtained differential equation (5) satisfies the con-

ditions of the extended Caratheodory Theorem (see

e.g., [9]). Therefore, there exists a unique (absolutely

continuous) solution of (5). We now apply the abstract

Theorem 5 to the hybrid OCP (1). In the case of the

hybrid control systemHS we have

X =W1,∞
n ([0, 1]), Y = L2

m([0, 1]).

By W1,∞
n ([0, 1]) we denote here the Sobolev space of

all absolutely continuous functions with essentially

bounded derivatives. Let us introduce the operator

P :W1,∞
n ([0, 1]) × L2

m([0, 1])→W1,∞
n ([0, 1]) × Rn,

where

P(x(·), u(·))
∣

∣

∣

∣

t
:=

























ẋ(t) −

r+1
∑

i=1

β[ti−1,ti)(t) fqi
(t, x(t), u(t))

x(0) − x0

























.

Evidently, the operator equation P(x(·), u(·)) = 0 is

consistent with the state equation from the abstract

optimization problem (2). Consider a regular OCP (1)

and introduce the Hamiltonian

H(t, x, u, p) = 〈p,

r+1
∑

i=1

β[ti−1,ti)(t) fqi
(t, x, u)〉.

where p ∈ Rn. Since every admissible control u(·) de-

termines a unique hybrid trajectory Xu, the following

cost functional J̃ : U → R such that J̃(u(·)) := J(Xu)

is well-defined. The differentiability of the given func-

tion φ implies the differentiability of J̃. The corre-

sponding derivative is denoted by ∇J̃. In the particular

case of OCP (1) the evaluation of the adjoint operator

∇J̃∗ to ∇J̃ is relatively easy. We now present our main

result that follows from Theorem 5.

Theorem 6. Consider a regular OCP (1). The gradient

∇J̃∗(u(·)) can be found by solving the equations

ẋ(t) = Hp(t, x(t), u(t), p(t)), x(0) = x0,

ṗ(t) = −Hx(t, x(t), u(t), p(t)), p(1) = −φx(x(1)),

∇J̃∗(u(·))(t) = −Hu(t, x(t), u(t), p(t)),

(6)

where p(·) is an absolutely continuous function (an

”adjoint variable”).

Proof. The Lagrangian of the regular problem (1) can

be written as

L(x(·), u(·), p̂, p(·)) = φ(x(1)) + 〈 p̂, x(0) − x0〉+

+ 〈p(t), ẋ(t) −

r+1
∑

i=1

β[ti−1,ti)(t) fqi
(t, x(t), u(t))〉dt,

where the adjoint variable here contains two compo-

nents p̂ ∈ Rn and p(·). If we differentiate the Lagrange

function with respect to the adjoint variable, then we

obtain the first equation from (6)

ẋ(t) =

r+1
∑

i=1

β[ti−1,ti)(t) fqi
(t, x(t), u(t)) =

= Hp(t, x(t), u(t), p(t)),

with x(0) = x0. Consider the term
∫ 1

0

〈p(t), ẋ(t)〉dt.

From the integration by part we have
∫ 1

0

〈p(t), ẋ(t)〉dt = 〈p(1), x(1)〉 − 〈p(0), x(0)〉−

−

∫ 1

0

〈 ṗ(t), x(t)〉.

Hence

L(x(·), u(·), p̂, p(·)) = φ(x(1)) + 〈p(1), x(1)〉+

+ 〈 p̂ − p(0), x(0)〉 − 〈 p̂, x0〉 −

∫ 1

0

〈 ṗ(t), x(t)〉dt+

+

∫ 1

0

〈p(t),

r+1
∑

i=1

β[ti−1,ti)(t) fqi
(t, x(t), u(t))〉dt.

(7)

If we differentiate L in (7) with respect to x(·), we can

use Theorem 5 and compute Lx, L∗x. Thus we obtain

the second relation in (6). Using (7), we also write

Lu(x(·), u(·), p̂, p(·))ν(·) = −

∫ 1

0

Hu(t, x(t), u(t))ν(t)dt

for every ν(·) ∈ L2
m([0, 1]). By Theorem 5, we obtain

the last relation in (6)

∇J̃∗(u(·))(t) = L∗u(x(·), u(·), p̂, p(·)) = −Hu(t, x(t), u(t)).

The proof is finished. ¤

The formulated result allows the explicit computation

of the gradient ∇J̃ (or ∇J̃∗) in a sophisticated mini-

mization problem (1).

4. NECESSARY OPTIMALITY CONDITIONS

AND THE COMPUTATIONAL ASPECT

In Section 3 we have developed explicit formulae for

the reduced gradient of the cost functional in (1). To

make a step forward in the study of the given OCP we

will discuss the necessary optimality conditions for (1)

and some related numerical aspects. Let us formulate

an easy consequence of Theorem 6.
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Theorem 7. Assume that OCP (1) has an optimal so-

lution (uopt(·), xopt(·)) such that uopt(t) ∈ int{U}, where

int{U} is the interior of the set U. Then (uopt(·), xopt(·))

can be found by solving the following equations

ẋopt(t) = Hp(t, xopt(t), uopt(t), p(t)),

x(0) = x0,

ṗ(t) = −Hx(t, xopt(t), uopt(t), p(t)),

p(1) = −φx(xopt(1)),

Hu(t, xopt(t), uopt(t), p(t)) = 0.

(8)

Clearly, the conditions (8) from Theorem 7 present

a necessary optimality conditions for a special case

of problem (1). Note that the last equation in (8)

is consistent with the usual optimality condition

∇J̃∗(u(·))(t) = 0, t ∈ [0, 1] if the optimal control takes

values in an open bounded control set.

Alternatively, Theorem 6 and Theorem 7 provide a ba-

sis for a wide class of the gradient-based optimization

algorithms for (1). We now assume that the control set

U has a so-called box-form, namely,

U := {u ∈ Rm : b
j
− ≤ u j ≤ b

j
+, j = 1, ...,m},

where b
j
−, b

j
+, j = 1, ...,m are constants. Let us con-

sider, for example, the standard gradient algorithm in

L
2
m([0, 1]) (see e.g., [8,14])

uk+1(t) = uk(t) − γk∇J̃∗(uk(·))(t), t ∈ [0, 1]

b
j
− ≤ uk+1

j (t) ≤ b
j
+, j = 1, ...,m, k = 0, 1, ...

u0(·) ∈ U,

(9)

where γk is a step-size of the gradient algorithm and

{uk(·)} ⊂ L2
m([0, 1]) is the sequence of iterations. Note

that in general cases an admissible iterative control

uk+1(·) can also be obtained by a projection

uk+1(t) = PU(uk(t) − γk∇J̃∗(uk(·))(t)).

Here PU is a projection operator on the control set U.

For the Projected Gradient Algorithm and for conver-

gence properties of (9) and of some related gradient-

type optimization procedures see e.g., [14,8].

Let us now present an implementable computational

scheme that follows from our consideration presented

above.

Algorithm 1. 1) Choose an admissible initial con-

trol u0(·) ∈ U and the corresponding continuous

trajectory x0(·). Set k = 0.

2) Given a xk
qi

(·) define qk
i+1

, i = 1, ..., r + 1 and

tk
i+1 := min{t ∈ [0, 1] : xk

qi
(t)
⋂

S qi,qi+1
, ∅}.

3) For the determined hybrid trajectory

Xuk

= (τk, xk(·), q̄k)

solve the above equations (6) and define the

gradient ∇J̃∗(uk(·))(t) ∀t ∈ [0, 1] of the cost

functional.

4) Using ∇J̃∗(uk(·)), compute the iteration uk+1(t)

by using a gradient-type method. Increase k by

one and go to Step (2).

Note that the switching times, number of switches

and switching sets in the given OCP (1) are assumed

to be unknown. Using the iterative structure of the

proposed Algorithm 1, one can compute the corre-

sponding approximations of the optimal trajectory, op-

timal switching times and optimal switching sets. Let

us now present the following convergence result for

Algorithm 1.

Theorem 8. Assume that the data for the regular OCP

(1) satisfies all hypotheses of Section 2 and that (1) has

an optimal solution (uopt(·), xopt(·)). Let {Xuk

} be a se-

quence of hybrid trajectories generated by Algorithm

1. Then {Xuk

} is a minimizing sequence for (1), i.e.,

lim
k→∞

J(Xuk

) = φ(xopt(1)).

Finally, note that Theorem 8 can be proved with the

help of the dominated convergence theorem and the

standard properties of a gradient minimization algo-

rithm in Hilbert spaces.

5. CONCLUDING REMARKS

In this paper, we have developed a new approach to a

class of hybrid optimal control problems of the Mayer

type. This approach is based on explicit formulae for

the reduced gradient of the cost functional of the given

hybrid optimal control problem. The corresponding

relations make it possible to formulate first-order nec-

essary optimality conditions for the considered hybrid

optimal control problems and provide a basis for ef-

fective computational algorithms. The idea of reduced

gradients can also be used for some linearization pro-

cedures of the initial optimal control problem. Note

that linearization techniques have been recognized for

a long time as a powerful tool for solving optimization

problems. The approach proposed in this paper can

be extended to some other classes of hybrid optimal

control problems. Finally, note that it seems to be

possible to derive necessary ǫ-optimality conditions

(the ǫ-Hybrid Maximum Principle) by means of the

presented techniques from Theorem 6.
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