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Chapter 1

Classification of dynamical systems

The goal of systems theory is to develop a general unifying formalism to model, analyze and
control dynamical systems of interest in different areas of science and engineering. A system is a
physical object while a model is a (more or less accurate) mathematical description of its behavior
that captures those features that are deemed mostly significant. In the following we briefly describe
the mains classes of models considered in the literature.

1.1 Time-driven systems

A dynamical system is called a time-driven system (TDS) if its state changes as time progresses.

When the independent variable time takes values in the set of real numbers, i.e., t ∈ R, we
speak of continuous-time time-driven systems, whose behavior is usually described by a system of
differential equations of the form

ẋ(t) = f(x(t), u(t))

where x(t) ∈ Rn and u(t) ∈ Rm are the state and the input of the system at time t, respectively.
In the linear case, often descriptions are used of the form

ẋ(t) = Ax(t) +Bu(t)

in which A ∈ Rn×n and B ∈ Rn×m are real matrices.

Example 1.1 (Continuous-time TDS) An example of such a system is the tank shown in Fig. 1.1
whose behavior, assuming the tank is not full, is described by the differential equation

d

dt
V (t) = q1(t)− q2(t). (1.1)

Here the independent variable is the continuous time t ∈ R. The signal V (t) denotes the volume
of liquid and we take it as the state of the system. Signals q1(t) and q2(t) denote the in/out flows
that can be imposed by two pumps and we take them as the inputs. ⋄

When the independent variable time takes values in the set of integers, i.e., t ∈ Z, we speak of
discrete-time time-driven systems, which are usually modeled by a system of difference equations

9
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Figure 1.1: A tank.

of the form
x(k + 1) = f(x(k), u(k))

where x(k) ∈ Rn and u(k) ∈ Rm are, resp., the state and the input of the system at discrete time
k. The linear case is correspondingly of the form

x(k + 1) = Ax(k) +Bu(k)

in which A ∈ Rn×n and B ∈ Rn×m are real matrices.

Example 1.2 (Discrete-time TDS) Assume that in the tank shown in Fig. 1.1 the measurements
of volume and flow are only available every T units of time (sampling interval). In such a case,
one may describe the behavior of the system only at time instants

0, T, 2T, 3T, . . . , kT, . . . .

Thus one defines the discrete-time signals V (k) = V (kT ), q1(k) = q1(kT ) and q2(k) = q2(kT )
whose independent variable is k = 0, 1, . . ..

If we let ∆t = T , we can approximate the time derivative of the continuous-time signals by their
incremental ratios

d

dt
V (t) ≈ ∆V

∆t
=

V (k + 1)− V (k)

T

and multiplying both sides by T , eq. (1.1) yields

V (k + 1)− V (k) = Tq1(k)− Tq2(k). (1.2)

This is a difference equation that relates the discrete-time signals V (k), q1(k) e q2(k). ⋄

1.2 Discrete-event systems

A discrete-event system (or event-driven system) [1, 8] is a dynamic system with a discrete state
space and piecewise constant state trajectories that evolves in accordance with the abrupt occur-
rence, at possibly unknown irregular intervals, of physical events that determine a state transition.
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The time instant at which events occur, as well as the actual event, will in general be unpredictable.
The state of such a system may have logical or symbolic, rather than numerical, values that change
in response to events which may also be described in non-numerical terms. Automata or finite state
machines are the most common models for discrete event systems.

Example 1.3 (Discrete-event system) Consider a robot that loads parts on a conveyor, whose
behavior is described by the automaton in Fig. 1.2. The robot can be ”idle”, ”loading” a part or
in a ”error” state when a part is incorrectly positioned. The events that drive its evolution are: a
(grasp a part), b (part correctly loaded), c (part incorrectly positioned) and d (part repositioned).

⋄

loading

b

aidle

error

cd

t

t1

idle

loading

error

a

state

b a

c

t2 t3 t4

Figure 1.2: A machine with failures.

In a logical discrete-event system the model does not specify the timing of event occurrences and
a common simplifying assumption is to consider only the order in which they occur. This sim-
plification is justified when the model is to be used to study properties of the event dynamics that
are independent of specific timing assumptions, such as identifying legal sequences of operations,
absence of a deadlock states, etc.).

In a timed discrete-event system the model also species the timing structure. This is necessary to
study properties explicitly dependent on inter-event timing, such as occurrence rate of an event,
average time spent in a given state, etc. Timed models can be further classified as:

a) non-stochastic: if the timing is known a priori;

b) stochastic: if the timing is not known a priori due to random delays or random occurrences
of events.

While one may think that discrete-event systems are intrinsically different from time-driven sys-
tems, it is often the case that a physical system that admits a time-driven model can also be de-
scribed by a discrete-event model where the time-driven dynamics are ignored. This procedure
to derive a simpler model in a way that preserves the properties being analyzed while hiding the
details that are of no interest is called abstraction.

Example 1.4 (Discrete-event model of the tank) Consider again the tank in Example 1.1 and
Example 1.2. Assume that it must be controlled so as to keep the level of fluid within the interval
[hmin, hmax]. To do so, one may use a supervisor that, by controlling the pumps, blocks the input
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Figure 1.3: Discrete-event model of the tank.

flow q1 when level hmax is reached and blocks the output flow q2 when level hmin is reached. The
behavior of such a supervisor may be simply described by the discrete-event model in Fig. 1.3.
The automaton in figure has three states (”High”, ”Medium”, ”Low”) and the events, that denote
the level crossing the thresholds hmin and hmax, can be generated by a level sensor. ⋄

1.3 Hybrid systems

A hybrid system is a system in which the behavior of interest combines the dynamics of both
time-driven systems and discrete-event systems.

Hybrid systems typically generate mixed signals that consist of combinations of continuous and
discrete-valued signals. Some of these signals take values from a continuous set (e.g. the set of
real numbers) and others take values from a discrete, typically finite set (e.g. the set of symbols
{a, b, c}). Furthermore, these continuous or discrete-valued signals depend on independent vari-
ables such as time, which may also be continuous or discrete-valued. Another distinction that can
be made is that some of the signals can be time-driven, while others can be event-driven in an
asynchronous manner.

Example 1.5 (Hybrid system) A thermostat is programmed to keep the temperature x(t) of a
room between TON = 20 ◦C and TOFF = 22 ◦C, switching on and off a heat pump. The room
exchanges heat with the external environment at temperature Te < TON .

When the heat pump is off, the heat flow is −k[x(t) − Te] [J/s]. Here k is a suitable coefficient
and the negative sign in front of it denotes that if x > Te then there is a heat loss from the room to
the external environment. Since the room temperature ẋ(t) is equal to the ratio between the total
heat flow and the room thermic capacity, that for sake of simplicity we assume to be unitary, we
can say that in this case the temperature decreases according to

ẋ(t) = −k[x(t)− Te].

When the heat pump is on, it generates a heat flow equal to q(t) [J/s] that we assume is greater
than the heat loss. Thus the temperature increases according to

ẋ(t) = q − k[x(t)− Te].

The thermostat activates the pump (state ON ) when the temperature is less than or equal to TON

and stops it (state OFF ) when the temperature is greater than or equal to TOFF . We assume
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Figure 1.5: Classification of systems.

that when the pump is on the heat flow it produces is greater than the heat flow loss towards the
external environment.

The behavior of this system can be described by the graphical model shown in Fig. 1.4. If we
ignore the dynamics within the boxes, we can recognize a simple discrete-event model that on the
occurrence of some events (corresponding to the temperature crossing some threshold) describes
the operation of the thermostat. If we focus on the dynamics within each box, we recognize a
continuous-time time-driven system associated with the temperature dynamics. ⋄

1.4 Classes of dynamical systems

A summary of the different classes we have described so far is shown in Fig. 1.5, where from top
to bottom one goes from a general class to a proper subset. Note that in the figure, we denote
these classes — as it is commonly done in the literature — as ”time-driven systems”, ”discrete-
event systems”, ”hybrid systems”. However, one should keep in mind that properly speaking this
taxonomy pertains to the models because the terms ”time-driven”, ”discrete-event” or ”hybrid”
should be used to classify the mathematical description rather than the physical object. Often
the same system (i.e., physical object) may be described by several models. In the following we
briefly describe these classes.
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Chapter 2

Formal Languages

This section introduces the basic notions of alphabet, word and language and some operators on
these sets. Two standard references on formal languages are [5, 4].

2.1 Alphabets and words

Definition 2.1 An alphabet E is a finite and non-empty set of symbols1. The number of symbols
that an alphabet contains is called its cardinality and is denoted by |E|. ▲

Example 2.1 Consider alphabets

E1 = {0, 1}, E2 = {a, b, c, . . . x, y, z} and E3 = {♣,♢,♡,♠}. (2.1)

The first alphabet has cardinality |E1| = 2, and consists of the symbols 0 and 1: it is used to write
binary number. The second one has cardinality |E2| = 26 and consists of the lowercase letters
in the Roman alphabet. The third one has cardinality |E3| = 4 and consists of non-alphanumeric
symbols used to denote the suits of a French playing card deck. ⋄

Definition 2.2 A word (or string or trace) w defined on an alphabet E is a sequence of symbols
in E. The number of symbols that form a word is called its length and is denoted by |w|, while
|w|e denotes the number of occurrence of symbol e ∈ E in w. ▲

Example 2.2 Consider the three alphabets defined in (2.1). Word w1 = 00110 defined on E1 has
length |w1| = 5, while |w1|0 = 3 and |w1|1 = 2. Word w2 = hello defined on E2 has length
|w2| = 5. Word w3 = ♣♣♣ defined on E3 has length |w3| = 3. ⋄

Definition 2.3 The set of all words defined on an alphabet E is denoted by E∗. The empty word,
i.e., the sequence of zero length, is defined on all alphabets and is always denoted by ε. ▲

One writes w ∈ E∗ to denote that w is a word defined on E. Note that while an alphabet E is a
finite set, set E∗ is always infinite.

1We denote an alphabet E to stress the fact that it describes the set of events that the system can generate.

17
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The following example explains how the set E∗ can be constructed in an orderly fashion.

Example 2.3 Consider alphabet E = {a, b, c}. We enumerate all words composed by symbols
of this alphabet, including the empty word, ordering them according to their length. The set of all
these words is E∗.

• ε: the word of zero length.

• a, b, c: the words of length 1. Note, therefore, that a symbol is also a word.

• aa, ab, ac, ba, bb, bc, ca, cb, cc: words of length 2.

• aaa, aab, . . ., ccb, ccc: words of length 3.

• · · ·

⋄

2.2 Operators on words

The first operator on words that will be considered is a binary operator: concatenation.

Definition 2.4 The concatenation of two words w1 ∈ E∗ and w2 ∈ E∗ is a new word w =
w1 · w2 ∈ E∗ composed by the sequence of symbols in w1 followed by the sequence of symbols
in w2. ▲

Example 2.4 Concatenating word w1 = a with word w2 = bba one gets w = w1 ·w2 = abba. ⋄

The symbol · used to denote concatenation is usually omitted, and one writes w1w2 instead of
w1 · w2. The length of a word obtained by concatenation is equal to the sum of the lengths of the
words that compose it, i.e., |w1w2| = |w1|+ |w2|.

Concatenation is an associative operator2, i.e., (w1w2)w3 = w1(w2w3) = w1w2w3. As an exam-
ple, if w1 = he, w2 = ll and w3 = o, their concatenations is w = w1w2w3 = hello.

On the contrary, concatenation is not a commutative operator, i.e., usually w1w2 ̸= w2w1. As an
example, if w1 = to and w2 = kyo, clearly tokyo ̸= kyoto.

The identity element of this operator is the empty word ε, i.e., for all w ∈ E∗ it holds wε = εw =
w.

Following the same notation used for multiplication3 in elementary arithmetics, it is common to
denote the concatenation of k identical symbols using the exponent k. As an example, word aabbb

2As such it can be applied to more than two strings.
3The multiplication operator — on the set of real number — and the concatenation operator — on the set of all

words defined on an alphabet — are denoted by the same symbol ·. They are both examples of monoids. However,
while the first operator is commutative the second is not.
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can also be written a2b3. For all symbols e ∈ E we conventionally denote e0 = ε, because it holds
eke0 = ek+0 = ek and thus e0 has to be the identity element.

Finally, the following definitions apply.

Definition 2.5 If a word w ∈ E∗ can be written as w = uvz where u, v, z ∈ E∗, then word u is
called a prefix of w, word v is called a substring of w and word z is called a suffix of w. If u is a
prefix of w we write u ⪯ w. ▲

Example 2.5 Consider word w = abcd. Its prefixes are ε, a, ab, abc and abcd. Its suffixes are ε,
d, cd, bcd and abcd. Its substrings are: all its prefixes, all its suffixes and strings b, c and bc. ⋄

The second operator on words that will be considered is a unitary operator: projection.

Definition 2.6 Given a word w ∈ E∗ and a subset alphabet Ê ⊆ E, the projection of w on Ê,
denoted by w ↑ Ê, is the word obtained erasing from w all symbols that do not belong to Ê. ▲

Example 2.6 Let E = {a, b, c} and Ê = {a, b}. Given the word w = abccacba, its projection on
Ê is obtained by removing all c’s and w ↑ Ê = ababa. ⋄

2.3 Languages

Languages are sets of words.

Definition 2.7 A language L defined on an alphabet E is a set of words on this alphabet. Its
cardinality, i.e., the number of words it contains, is denoted by |L|. ▲

Example 2.7 Given alphabet E = {a, b}, consider the following languages.

L1 = {aab, aa, bbba}, L2 = {a, b} = E, L3 = {ε, a}, L4 = {ε},
L5 = {w ∈ E∗ | |w| = 5}, L6 = {w ∈ E∗ | |w| > 3}, L7 = ∅, L8 = E∗.

Language L1 consists of three words, i.e., |L1| = 3. Language L2 consists of two words, both of
length one, and coincides with the alphabet. Language L3 consists of two words, including the
empty word. Language L4 only consists of the empty word. Language L5 consists of all words of
length five. Language L6 consists of all words of length greater than 3. Language L7 is the empty
set and does not contain any words. Language L8 consists of all the words defined on E. ⋄

Note that a language can be empty, i.e., have cardinality zero (such as language L7 defined in the
example) or can have a finite cardinality (such as languages L1, L2, L3, L4 and L5 in the example)
or even have infinite cardinality (such as languages L6 and L8 in the example). A language can
be explicitly described enumerating all words (the first four languages in the example) or using a
set notation (the last four languages in the example). Note, finally, that an alphabet can also be
seen as a particular language composed of words of length 1 (this is the case of language L2 in the
example).



20 Chapter 2. Formal Languages

Since languages are sets of words, it is possible to compare two languages through the inclusion
⊆ and strict inclusion ⊂ relations.

Example 2.8 Language L1 = {a} is strictly included in language L2 = {a, aa}. None of these
two languages is included in language L3 = {aaa}. ⋄

If L is a language on alphabet E it holds ∅ ⊆ L ⊆ E∗.

2.4 Operators on languages

Usual binary set operators, such as union and intersection, can be applied to languages.

Definition 2.8 Let L1 ⊆ E∗
1 and L2 ⊆ E∗

2 be two languages, and let Ē = E1 ∩ E2 and E =
E1 ∪ E2 be the intersection and the union of their respective alphabets. We define the following
languages:

• union of L1 and L2: L1 ∪ L2 = {w ∈ E∗ | w ∈ L1 ∨ w ∈ L2}4;

• intersection of L1 and L2: L1 ∩ L2 = {w ∈ Ē∗ | w ∈ L1, w ∈ L2}. ▲

Example 2.9 If L1 = {ε, a} and L2 = {a, b, ab}, then L1∩L2 = {a} and L1∪L2 = {ε, a, b, ab}.
⋄

Both operators are associative and commutative. The identity element of the intersection operator
is the language E∗, i.e., for all L ⊆ E∗ it holds L ∩ E∗ = E∗ ∩ L = L. The identity element of
the union operator is the language ∅, i.e., for all L ⊆ E∗ it holds L ∪ ∅ = ∅ ∪ L = L.

The concatenation operator, defined on words, can be redefined as language operator.

Definition 2.9 Let L1, L2 ⊆ E∗ be two languages. We define concatenation of L1 and L2 the
language

L1L2 = {w = w1w2 ∈ E∗ | w1 ∈ L1, w2 ∈ L2},
consisting of all words that are the concatenation of a word in L1 with a word in L2. ▲

Example 2.10 If L1 = {ε, a} and L2 = {a, b, ab}, then L1L2 = {ε · a}∪ {ε · b}∪ {ε · ab}∪ {a ·
a} ∪ {a · b} ∪ {a · ab} = {a, b, aa, ab, aab}. The word ab can be obtained in two different ways:
either concatenating ε with ab or concatenating a with b. ⋄

The concatenation operator on languages is associative and non-commutative. Its identity element
is the language that consists of the empty word {ε}, i.e., for all L ⊆ E∗ it holds L{ε} = {ε}L =
L.

It is also usual to denote for all L ⊆ E∗: L0 = {ε}, L1 = L, L2 = LL, etc.

4Here ∨ denotes the logical OR.
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Finally we note that the concatenation operator is distributive with respect to the union, i.e., (L1 ∪
L2)L3 = L1L3 ∪ L2L3 and also L1(L2 ∪ L3) = L1L2 ∪ L1L3.

A unary operator on language is the Kleene star.

Definition 2.10 Given a language L ⊆ E∗, its Kleene star (or Kleene closure) is the language

L∗ = {ε} ∪ L ∪ LL ∪ LLL ∪ · · · =
∞⋃
k=0

Lk,

consisting of all words obtained by the concatenation of words in L an arbitrary number of times.
▲

Example 2.11 If L = {bb} is a language on E = {b}, then L∗ = {ε} ∪ {bb} ∪ {bbbb} ∪ · · · =
{(bb)n | n ≥ 0} ⊂ E∗. ⋄

Note that the Kleene star of an alphabet (seen as a language) generates the set of all possible words
on this alphabet and this justifies the notation E∗ used to denote this set.

Other unary operators on languages are the prefix closure and the complement operators.

Definition 2.11 Given a language L ⊆ E∗, its prefix closure is the language

pref(L) = {u ∈ E∗ | there is w ∈ L : u ⪯ w}

consisting of all prefixes of words in L. ▲

Obviously, L ⊆ pref(L), because if a word w is in L then w is also in pref(L). A language L is
called prefix closed if L = pref(L) holds.

Example 2.12 If L1 = {ε, a, aa} it holds L1 = pref(L)1 and therefore L1 is prefix closed. If
L2 = {a, b, ab}, it holds L2 ⊊ pref(L)2 = {ε, a, b, ab} and therefore L2 is not prefix closed. ⋄

Definition 2.12 Given a language L ⊆ E∗, its complement is the language

∁L = {w ∈ E∗ | w ̸∈ L}

consisting of all words that do not belong to L. We can also write ∁L = E∗ \ L. ▲

Example 2.13 Consider language L1 = {ε, a, aa} on E = {a}: its complement is ∁L1 = {an |
n ≥ 3}. ⋄

The last operator that we consider, called concurrent composition, plays, as we will see, an impor-
tant role when describing the behavior of a system consisting of several subsystems.

Definition 2.13 Let L1 ⊆ E∗
1 and L2 ⊆ E∗

2 be two languages on possibly different alphabets, and
let E = E1 ∪ E2 be the union of their alphabets. The concurrent composition of L1 and L2 is the
language

L1 ∥ L2 = {w ∈ E∗ | w ↑ E1 ∈ L1, w ↑ E2 ∈ L2},
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consisting of all words on E whose projection on E1 is a word of L1 and whose projection on E2

is a word of L2. ▲

Example 2.14 Consider E1 = {a, b}, E2 = {b, c}, L1 = {abn | n ≥ 0} and L2 = {cbcnb | n ≥
0}. The concurrent composition of L1 and L2 is L = {acbcnb | n ≥ 0}∪ {cabcnb | n ≥ 0}. Note
that the projection of L on E1 is the language {abb} ⊂ L1, while the projection of L on E2 is the
language {cbcnb | n ≥ 0} = L2. ⋄

As a particular case, if the alphabets of the composed languages are the same, the concurrent
composition operator is equivalent to the intersection. In fact, if E1 = E2 = E for every w ∈ E∗

it holds w ↑ E1 = w ↑ E2 = w and therefore

L1 ∥ L2 = {w ∈ E∗ | w ↑ E1 ∈ L1, w ↑ E2 ∈ L2}
= {w ∈ E∗ | w ∈ L1, w ∈ L2} = L1 ∩ L2.

The concurrent composition operator is associative and commutative, and its identity element is
the language E∗.

We conclude observing that all binary operators we have defined in this subsection are associative;
hence they can be naturally extended to operate on more than two languages. As an example,
composing L1 with L2 and composing the resulting language with L3 one gets language L =
L1 ∥ L2 ∥ L3.



Chapter 3

Deterministic finite automata

In the previous section we gave a few examples of formal languages either listing their words
or describing them by set notation. However, it is also possible to define a language through a
generator, i.e., a structure to which a language can be associated. Such a generator is a discrete
event model. In this section a particular model, called deterministic finite automaton, is presented.
This model is based on two primitives: states and transitions. It describes in a natural way the
behavior of a dynamic system that evolves from state to state upon the occurrence of discrete
events. For further reading, we refer to [5, 1].

3.1 Definition of deterministic finite automaton

Definition 3.1 A deterministic finite automaton (DFA) is a 5-tuple

G = (X,E, δ, x0, Xm)

where:

• X is a finite set of states;

• E is an alphabet;

• δ : X × E → X is a transition function1;

• x0 ∈ X is an initial state;

• Xm ⊆ X is a set of final states (or marked states). ▲

We use DFAs to describe discrete event systems, hence the alphabet will represent a finite set of
events. The transition function specifies the dynamics of the automaton: if x̄ = δ(x, e) then the
occurrence of event e when the current state of the automaton is x leads to state x̄.

An automaton can be described by a graph in which each state corresponds to a node and is
represented by a circle: in particular, the initial state is represented by a circle with an input arrow,

1Here we consider partial functions, i.e., there may exists pairs (x, s) ∈ X × E such that δ(x, s) is not defined.
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x0 x1 x2

a b c

d

d

Figure 3.1: A deterministic finite automaton.

and a final state by a double circle. If x̄ = δ(x, e) there will be a directed edge from node x to
node x̄ labeled with the symbol e to represent the transition from x to x̄, and this arc is often called
an e-transition.

Example 3.1 Fig. 3.1 shows the graphical structure of an automaton with X = {x0, x1, x2},
alphabet E = {a, b, c, d}, initial state x0 and set of final states Xm = {x0}. The transition
function is given by the following table

δ a b c d

x0 x1

x1 x2 x0

x2 x2 x0

In this table, say, the value x1 at the intersection between row x0 and column a denotes that
δ(x0, a) = x1. An empty box, such as the one at the intersection between row x0 and column b,
denotes that the corresponding transition is not defined. The c-transition from the node x2 to itself
is called a loop. ⋄

The automaton in Fig. 3.1 may describe the behavior of a machine that is initially off (state x0).
An operator can switch the machine on (event a) putting it in stand-by (state x1). After a set-up
operation (event b) the machine reaches a working condition (state x2) in which can repeatedly
process parts (event c can occur an indefinite number of times in state x2). From any state, the
operator can turn off the machine (event d). There is a single final state x0, to show that the
machine is required to be off at the end of a working period.

In a DFA every transition is associated to an event. Thus the labels of the outgoing transitions
from a given state x specify which events may occur in that state.

Definition 3.2 Given a DFA G = (X,E, δ, x0, Xm), the set of events enabled (or active) in state
x ∈ X is

A(x) = {e ∈ E | δ(x, e) is defined}.

To denote that e ∈ A(x) one also writes δ(x, e)!, meaning that function δ is defined for the pair
(x, e). ▲

We have mentioned that in a DFA the transition function δ is a partial function, i.e., for some
x ∈ X and some e ∈ E there may not be an e-transition outputting from state x (or equivalently
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A(x) ⊊ E). Note, however, that one cannot have two or more transitions with the same label
outputting from a state x.

The behavior of an automaton is given by all its possible evolutions, characterized by its runs.

Definition 3.3 Given a DFA G = (X,E, δ, x0, Xm), we define run of length k a sequence of
states and transitions

x(0)
e1−→ x(1)

e2−→ · · ·x(k−1)
ek−→ x(k)

where: for all i = 0, . . . , k it holds that x(i) ∈ X and for all i = 1, . . . , k it holds that x(i) =
δ(x(i−1), ei), i.e., the occurrence of event ei from state x(i−1) leads to state x(i). We also say that
this run starts from state x(0) and produces word w = e1e2 · · · ek reaching state x(k). ▲

Since δ is a function, there cannot be two different runs that start from the same state and produce
the same word.

Example 3.2 A possible run of the automaton in Fig. 3.1 is

x0
a−→ x1

b−→ x2
c−→ x2

c−→ x2.

This run has length 4: it starts from state x0 and produces word w = abcc reaching state x2. It
describes an evolution in which the machine is first switched on, then after a set-up reaches the
working state and finally processes two parts.

Note that a run may start from any state, and not necessarily from the initial one. Another possible
run of the automaton in Fig. 3.1 is

x2
c−→ x2

c−→ x2
d−→ x0.

This run of length 3 starts from state x2 and produces word w = ccd reaching state x0.

Finally it may also be possible to define a run of length zero. Given any state xi (for i+0, 1, 2) of
the automaton in Fig. 3.1, the following is run of length zero

xi

where no transition occurs and the state does not change. Such a run produces the empty word ε.
⋄

To describe the runs of a DFA in more a compact way we introduce the following notation.

Definition 3.4 Given a DFA G = (X,E, δ, x0, Xm), the transitive and reflexive closure of the
transition function δ is the function δ∗ : X ×E∗ → X such that δ∗(x,w) = x̄ if there exists a run

x = x(0)
e1−→ x(1)

e2−→ · · ·x(k−1)
ek−→ x(k) = x̄

that starts from x and reaches state x̄ producing word w = e1e2 · · · ek.

Considering runs of length zero, one writes δ∗(x, ε) = x for all x ∈ X , i.e., starting from a state
x and producing the empty word the automaton remains in the same state. ▲
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We also use the notation δ∗(x,w)! (i.e., δ∗(x,w) is defined) to denote that there is a run that
produces w from x.

Example 3.3 For the automaton shown in Fig. 3.1 it holds that δ∗(x0, abcc) = x2. ⋄

3.2 Languages of a deterministic finite automaton

To each run of an automaton is associated a word on alphabet E. Hence, if one considers the set
of all possible runs that start from the initial state, the set of all corresponding words defines a
language L ⊆ E∗.

Definition 3.5 Given a DFA G = (X,E, δ, x0, Xm), we say that a word w ∈ E∗ is:

• generated if δ∗(x0, w)!, i.e., there exists a run that produces w starting from the initial state;

• accepted if δ∗(x0, w) = x ∈ Xm, i.e., there exists a run that produces w starting from the
initial state and reaches a final state. ▲

Example 3.4 Word abcc is generated by the automaton in Fig. 3.1 because δ∗(x0, abcc) = x2, but
is not accepted because state x2 is not final. Conversely, the word ad is accepted (and therefore
also generated) because δ∗(x0, ad) = x0 and x0 is final. Finally, word ac is not generated (and
therefore not accepted) because δ∗(x0, ac) is not defined: from the initial state the occurrence of
a leads to state x1, from which event c is not enabled. ⋄

In the previous definition w can be the empty word ε. The empty word can always be generated
and is accepted only if δ∗(x0, ε) = x0 ∈ Xm, i.e., if the initial state is also final.

By inspection of the graphical representation of a DFA, we may say that w is generated if there
is a directed path in the graph of the automaton2 that starts from the initial state and such that the
labels along its arcs form w. If the terminal node of such a path is a final state, w is also accepted.

Definition 3.6 Given a DFA G = (X,E, δ, x0, Xm) one associates with it two languages.

• the generated language, i.e., the set of all generated words:

L(G) = {w ∈ E∗ | δ∗(x0, w)! } ⊆ E∗;

• the accepted language, i.e., the set of all accepted words:

Lm(G) = {w ∈ E∗ | δ∗(x0, w) ∈ Xm} ⊆ L(G).

▲

2See Appendix B for a formal definition of graph and path.
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The generated language describes all possible evolutions of a system. The accepted language
describes those evolutions that correspond to the completion of certain tasks. For instance, for the
automaton in Fig. 3.1 that describes a machine, the accepted language describes evolutions that
lead to state x0, i.e., that bring back the machine to the off state.

Note that the language generated by a DFA is always prefix closed, i.e., L(G) = pref(L(G)): in
fact if a word can be generated then all of its prefixes can also be generated.

Conversely, the language accepted by a DFA is not necessarily prefix closed, because not all
prefixes of an accepted word need to be accepted, thus it holds that Lm(G) ⊆ pref(Lm(G)). One
can easily prove that Lm(G) = pref(Lm(G)) if and only if Xm = X , i.e., all states of G are final.

Example 3.5 Given the DFA in Fig. 3.1, word ad is accepted but its prefix a is not. ⋄

Moreover, if a word can be accepted, then that word and all its prefixes can also be generated: this
implies that pref(Lm(G)) ⊆ L(G) always holds.

Combining all previous expressions, one can write for any DFA G:

Lm(G) ⊆ pref(Lm(G)) ⊆ L(G) = pref(L(G)).

We conclude this section defining the class of languages accepted by DFAs.

Definition 3.7 The class languages accepted by DFAs on an alphabet E is the set

LDFA = {L ⊆ E∗ | (there exists a DFA G) : L = Lm(G)},

that consists of all languages that can be accepted by some DFA. ▲

The above definition takes into account only the class of languages accepted by DFAs, and not the
class of languages generated by DFAs, which we denote L′

DFA. One can readily show, however,
that L′

DFA ⊊ LDFA holds, i.e., the class of languages accepted by DFAs is larger than the class
of languages generated by DFAs.

To prove the set inclusion L′
DFA ⊆ LDFA observe first that if a language belongs to the class

L′
DFA then it belongs also the class LDFA . In fact, if a language is generated by a DFA G, there

also exists a DFA G′ that accepts it: G′ is obtained from G by redefining all states as final, so that
all generated words are also accepted.

In addition, to prove that the inclusion is strict, it is sufficient to show that there exists languages
in LDFA but not in L′

DFA. Such is the case, because, any language accepted by a DFA G where
not all states are final, i.e., Xm ⊊ X , is not prefix closed; therefore, this language does not belong
to L′

DFA since all languages generated by DFAs are prefix closed.

3.3 Properties of automata

In this section we define the main properties of an automaton, which correspond to properties of
interest of the system it describes. Since an automaton is represented by a graph, such properties
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can be mapped into the properties of the graph. However, it is also important to redefine them in
terms of languages. These concepts are also discussed in [1].

Definition 3.8 Let G = (X,E, δ, x0, Xm) be a DFA. A state x ∈ X is called:

• reachable from state x̄ ∈ X if there exists a word w ∈ E∗ such that δ∗(x̄, w) = x. A state
x reachable from the initial state x0 is simply called reachable;

• co-reachable to state x̄ ∈ X if there exists a word w ∈ E∗ such that δ∗(x,w) = x̄. A state
x co-reachable to a state x̄ ∈ Xm, x is simply called co-reachable;

• blocking if it is reachable but not co-reachable;

• dead if A(x) = ∅, i.e., no transition is enabled at x. ▲

Note that dead and blocking states have different properties that should not be confused. A dead
state may be non-blocking, if it is final3. A blocking state may not be dead: this is the case of state
x2 in the DFA in Fig. 3.2 (a).

By inspection of the graph of an automaton one can say (using the notation of Appendix B) that
a state x is: reachable from state x̄ if there exists a directed path that starts from x̄ and reaches x,
co-reachable to state x̄ if there exists a directed path that starts from x and reaches x̄; dead if there
are no output arcs in node x.

For an automaton the following properties can be defined.

Definition 3.9 A DFA G is called:

• reachable if all its states are reachable;

• co-reachable if all its states are co-reachable;

• non-blocking if all its states are non-blocking;

• trim if it is reachable and co-reachable;

• reversible if every state reachable from the initial state is also co-reachable to the initial
state. ▲

By inspection of the graph of an automaton one can say that the automaton is blocking if there
exists a reachable ergodic component4 that does not contain marked states (once you reach that
component no final state can be reached), and reversible if the initial state belongs to an ergodic
component.

Example 3.6 In the DFA shown in Fig. 3.2 (a) all states are reachable, only states x0 and x1
are co-reachable and state x3 is dead; therefore this automaton is reachable, not co-reachable and

3A final state is co-reachable by definition, since δ∗(x, ε) = x ∈ Xm.
4See Appendix B for the definition of ergodic component.
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Figure 3.2: (a) A reachable and blocking automaton; (b) a non-reachable and non-blocking au-
tomaton; (c) a trim automaton.

blocking. In the DFA shown in Fig. 3.2 (b) all states are co-reachable but only states x0 and x1 are
reachable; therefore this automaton is not reachable. co-reachable and not blocking. In the DFA
shown in Fig. 3.2 (c) all states are reachable and co-reachable; therefore this automaton is trim.
None of the three automata in Fig. 3.2 is reversible: an example of a reversible DFA is given in
Fig. 3.1. ⋄

Reachability allows one to study which are the possible states in which a system can be after
an evolution that starts from the initial state. A blocking state represents a (usually undesirable)
condition from which the system cannot evolve towards a terminal state, and thus is not able to
complete a task. A dead state represents a condition from which no event can occur. Reversibility
characterizes systems that can always be brought back to the initial condition.

According to Definition 3.6, we have observed that for all DFA G it holds that pref(Lm(G)) ⊆
L(G). The following result also holds.

Proposition 3.1 A DFA G is non-blocking if and only if pref(Lm(G)) = L(G).

Proof.

(If) If pref(Lm(G)) = L(G) holds, then every generated word u ∈ L(G) is also a prefix of an
accepted word, i.e., for all generated word u there exists a word v such that uv ∈ Lm(G) is
accepted. Thus, for every reachable state x = δ∗(x0, u), there exists a v such that δ∗(x, v) is a
final state, and this proves that all reachable states are co-reachable.

(Only if) If pref(Lm(G)) ⊊ L(G) holds, then there exists a generated word u ∈ L(G) that is not
a prefix of an accepted word, i.e., there exists no word v such that uv ∈ Lm(G) is accepted. Thus
if x = δ(x0, u) is the state reached by generating u, there exists no word v such that δ∗(x, v) is a
final state. Therefore x is accessible but not co-reachable, hence it is blocking. □

Example 3.7 In the blocking DFA in Fig. 3.2 (a) one can verify that Lm(G) = {ban | n ≥ 0}
and pref(Lm(G)) ⊊ {ε, a, aa} ∪ {ban | n ≥ 0} = L(G).

On the contrary, the DFA in Fig. 3.2 (b) and Fig. 3.2 (c) are non-blocking because in both cases it
holds that Lm(G) = {ban | n ≥ 0} and Lm(G) = {ε} ∪ {ban | n ≥ 0} = L(G). ⋄
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Given an automaton G that is not trim5 it is always possible to trim it removing all states that
are not reachable or not co-reachable and the transitions that input or output from them. The
resulting structure is called trim(G): this automaton accepts language Lm(trim(G)) = Lm(G),
and generates language L(trim(G)) = pref(Lm(G)).

The following algorithm determines the trim structure of a non-trim DFA G.

Algorithm 3.1 Trimming a DFA
Input: A DFA G = (X,E, δ, x0, X

′
m) which is not trim.

Output: A reachable and co-reachable DFA trim(G) = (X ′, E, δ′, x0, X ′
m) such that:

Lm(trim(G) = Lm(G) and L(trim(G) = pref(Lm(G)).

1. Let X ′ = {x ∈ X | x is reachable and co-reachable in G }.

2. Let X ′
m = Xm ∩X ′.

3. For all x ∈ X ′ and for all e ∈ E, let δ′(x, e) = δ(x, e) if x ∈ X ′ and δ(x, e) ∈ X ′ else it
is not defined. ■

We point out the trimming operator does not change the accepted language. Furthermore, the trim-
ming of a non-blocking DFA does not even change the generated language, but simply removes
unreachable states. Conversely, the trimming of a blocking DFA necessarily changes the generated
language.

Example 3.8 Trimming the DFA in Fig. 3.2 (a) or the DFA in Fig. 3.2 (b) one gets the DFA in
Fig. 3.2 (c). ⋄

3.4 Automata as sequence recognizers

Formal languages theory typically considers just one type of DFA language: the accepted lan-
guage. This is because formal languages theory does not consider an automaton as a dynamical
system that spontaneously generates events but rather as a sequence recognizer. In this view, a
DFA is a device driven by symbols read from an input tape as shown in Fig. 3.3. The reading head
— represented by the arrow — moves from left to right. Depending on its current state and on
the symbol it reads from the tape, the automaton executes a transition moving to a new state, and
accepts the word if the new state is final.

If one sees a DFA as a device driven by input symbols, it is necessary to assume that any symbol
may be read regardless of the current state of the automaton. This is formalized with the notion of
complete automaton.

Definition 3.10 A DFA G = (X,E, δ, x0, Xm) is called complete if the transition function δ(x, e)
is defined for all state x ∈ X and all symbols e ∈ E or, equivalently, if for all x ∈ X it holds that
A(x) = E. ▲

5We assume that Lm(G) ̸= ∅, otherwise the trim structure would be an empty automaton with X = ∅.
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Figure 3.3: A DFA reading from a tape.

Example 3.9 The DFA in Fig. 3.1 is not complete. ⋄

Note that if G is a complete automaton then L(G) = E∗.

It is always possible to complete a DFA with the following algorithm.

Algorithm 3.2 Completion of a DFA
Input: A non-complete DFA G = (X,E, δ, x0, Xm).
Output: A complete DFA G′ = (X ′, E, δ′, x0, Xm) with Lm(G′) = Lm(G) and L(G′) = E∗.

1. Let X ′ = X ∪ {xc}.

2. For all x ∈ X ′ and for all e ∈ E, let

δ′(x, e) =

 δ(x, e) if δ(x, e) is defined;

xc otherwise.

■

Note that the completed DFA G′ has same alphabet, same initial state and same set of final states
of G. The state set of G′ includes all states of G with the addition of a new non-final sink state xc,
which will be reached by words that are not generated by G. All transitions that are defined in G
are also in G′ and the transition function δ′ is completed with new transitions that lead all to the
new state xc.

Example 3.10 Completing the automaton in Fig. 3.1 one gets the automaton in Fig. 3.4. Note that
for sake of simplicity, we represent a single transition labeled e1, e2, . . . , ek from node x to node
x̄ to denote the parallel of k different transitions (each with label ei) from x to x̄. ⋄

Note, finally, that while the complete automaton G′ accepts the same language of G, it does not
generate the same language: the behaviors the two automata are different. In particular, G′ is
certainly blocking, because the new state xc is not co-reachable.

3.5 Modeling with deterministic automata

In this section some elementary examples of discrete event systems are discussed and their corre-
sponding DFA models are presented.
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Figure 3.4: The automaton obtained by completing the DFA in Fig. 3.1.
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Figure 3.5: DFA model of a communication protocol.

3.5.1 Communication protocol

Consider a transmitter that operates on an unreliable channel. From the initial state ready when a
request for transmission (req) arrives it goes to state preparing message. When the message has
been composed, the transmitter sends it on the channel (send) and waits for an acknowledgment
from the receiver (ack), to confirm the message has arrived. If the acknowledgement is received,
the transmitter goes back to the initial state, ready to process new transmission requests. However,
if the acknowledgement is not received within a predefined time interval then a communication
failure has certainly occurred (error) and the transmitter tries to resend the message. Repeated
attempts to send the message are made until the transmission succeeds.

A simplified description of this protocol is given by the DFA in Fig. 3.5. The alphabet of events
is E = {req, send, error, ack}. The proposed model has three states whose physical meaning
is described in the legend in figure. We assume that the unique final state is the ready state x0
because once a request is received, the transmission must be completed.

3.5.2 Dispensing machine

The China Science and Technology Museum in Beijing has a room displaying old equipment from
the 1980s, where one can see an ancient machine which dispenses candies. It operates as follows.
Initially the machine is in a ready state. When a one yuan coin is inserted (yuan), the machine
goes in a payment received state. When a five jiao coin is inserted (wujiao), the machine waits a
for a second five jiao coin before going to the payment received state. From the payment received
state pushing a button (push) the machine goes to a dispensing state from which it releases a candy
(candy) and then goes back to the ready state.
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Figure 3.6: DFA model of a dispensing machine.

A description of the dispensing machine operation is given by the DFA in Fig. 3.6. The alphabet
of events is E = {yuan,wujiao,push,candy}. The proposed model has four states whose physical
meaning is described in the legend in figure. We assume that the unique final state is also the
initial ready state x0 because once a coin is inserted, the operation must be completed dispensing
the candy.

3.5.3 Computer program

Consider the simple Program 1, which reads a non-negative integer number x ∈ N = {0, 1, 2, . . .}
and computes its double y.

Program 1 Compute the double of a non-negative integer x
1: write(’Input a non-negative integer’); /* [write 1]
2: read x;
3: if x ∈ N then
4: y := 2 ∗ x;
5: write(’The double of ’,x,’ is ’,y); /* [write 2]
6: else
7: write(’This is not a positive integer’); /* [write 3]
8: goto 1;
9: end if

10: return

This program can be described by the DFA in Fig. 3.7. Here each instruction is associated to an
event while each state normally denotes the progress of the execution, i.e., which event should
be executed next. Note that the testing of the if condition is also represented by a place x2 with
two output transitions: one occurs when the condition evaluates TRUE (x ∈ N) and the other
when it evaluates FALSE (x ̸∈ N). The final state is x5, reached when the program execution is
terminated.

3.5.4 Language recognizer

When an automaton is used as a sequence recognizer, we assume it reads symbols from an input
tape as discussed in Subsection 3.4.
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Figure 3.7: A DFA describing Program 1.
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Figure 3.8: A DFA on alphabet 0.E = {a, b, c} accepting words containing exactly two a’s.

Initially (see also Fig. 3.3) no symbol is read and the current word is w0 = ε: the automaton is in
state x(0) = x0. Then symbol e1 is read: the new word is w1 = w0e1 = e1 and the automaton
moves to state x(1) = δ(x(0), e1). Recursively at step k > 1 symbol ek is read: the new word is
wk = wk−1ek = e1e2 · · · ek and the automaton moves to state x(k) = δ(x(k−1), ek). A word wk,
with k = 0, 1, . . ., is accepted if it leads to a final state x(k) ∈ Xm.

It is common in this framework, given a description of a language L, to ask for the structure of
a DFA G that accepts it. Note that the requirement is that Lm(G) = L, i.e., G should accept all
words in L and only words in L. Two examples are now presented.

Problem 3.1 Determine a DFA on alphabet E = {a, b, c} that accepts the set of all words con-
taining exactly two a’s. ⋄

Such an automaton is shown in Fig. 3.8. We need four states to classify words as follows:

• State x0 is reached by words containing no a. State x1 is reached by words containing just
one a. These states are not final because these words are not accepted.

• State x2 is reached by words containing two a’s. The state is final because these words are
accepted.

• State x3 is reached by words containing three or more a’s. The state is not final because
these words are not accepted.

Note that this automaton is complete: it generates all words on alphabet E. However, it is blocking:
whenever more than two a’s are read, then no matter what will be read next, all continuations will
not accepted. A trim automaton accepting the same language can be obtained from the DFA in
Fig. 3.8 removing state x3 and all its input/output arcs.
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Figure 3.9: A DFA on alphabet E = {a, b, c} accepting words ending in ab.

Problem 3.2 Determine a DFA on alphabet E = {a, b, c} that accepts the set of all words ending
with ab. ⋄

Such an automaton is shown in Fig. 3.9. We need three states to classify words as follows:

• State x2 is reached by words ending in ab. The state is final because these words must be
accepted.

• State x1 is reached by words ending in a: hence we just need one more b to accept. The
state is not final because these words must not be accepted.

• State x0 is reached by words not ending in a and not ending in ab: hence we need a substring
ab to accept. The state is not final because these words must not be accepted.

3.6 Modular synthesis by concurrent composition

A complex system is often composed by several simpler subsystems interacting among them. In
this section we show a technique to build a model of an overall system by modular synthesis, i.e.,
appropriately composing the models of the subsystems (modules).

3.6.1 Synchronized events

We assume that each module is described by a DFA; the model of the overall system is a DFA
constructed using the concurrent composition. This operator, denoted by ∥, has previously been
defined as a language operator (see Definition 2.13); here we show that it also has a natural coun-
terpart on the transition structure of DFAs.

Let us first clarify how the interaction between the various subsystems is modeled in this approach.
We consider for sake of simplicity the case of two modules to be composed, but what we say can
be generalized to the composition of more than two modules.

Suppose we have two modules (i.e., DFAs) G′ and G′′ whose alphabets are, respectively, E′ and
E′′. Let E = E′ ∪ E′′ be the union of the two alphabets; this set can be partitioned into the three
disjoint subsets shown in Fig. 3.10.

• Symbols in E′ \E′′, i.e., those belonging only to the first alphabet, are called private events
of G′.



36 Chapter 3. Deterministic finite automata

E’  \ E” E’ ∩ E” E”  \ E’ 
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Figure 3.10: Partition of the alphabet E = E′ ∪ E′′ into the three subsets E′ \ E′′, E′ ∩ E′′ and
E′′ \ E′.

• Symbols in E′′ \ E′, i.e., those belonging only to the second alphabet, are called private
events of G′′.

• Symbols in E′ ∩ E′′, i.e., those that are common to both alphabets, are called synchronized
events.

The overall system G, whose state space is denoted X , consists of the composition of the modules
G′ and G′′, whose state space is denoted, resp., X ′ and X ′′. It holds that X ⊂ X ′ × X ′′, i.e., a
state of G takes the form x = (x′, x′′) ∈ X , where x′ ∈ X ′ and x′′ ∈ X ′′.

An event that is private to one module can occur whenever that module is in a state in which
thee event active, regardless of the state in which the other module is: in fact, private events of
one module are ignored by the other module. On the contrary, a synchronized events can only be
executed if both modules are in states in which the event is active; furthermore it must be executed
simultaneously on both modules (hence the name synchronized). Thus, if w is a word generated
by G, its projections on the alphabets E′ and E′′ will be words generated, resp., by G′ and by G′′.

3.6.2 Concurrent compositions of DFAs

We can give the following definition.

Definition 3.11 Let G′ and G′′ be two DFAs. Their concurrent composition (or synchronous
product) is the DFA G = G′ ∥ G′′ that generates language L(G) = L(G′) ∥ L(G′′) and accepts
language Lm(G) = Lm(G′) ∥ Lm(G′′). ▲

The concurrent composition of two DFAs can determined with following algorithm.

Algorithm 3.3 Concurrent composition of two DFAs.
Input: Two DFAs G′ = (X ′, E′, δ′, x′0, X

′
m) and G′′ = (X ′′, E′′, δ′′, x′′0, X

′′
m)

Output: A DFA G = (X,E, δ, x0, Xm) with L(G) = L(G′) ∥ L(G′′) and Lm(G) = Lm(G′) ∥
Lm(G′′).

1. Let E = E′ ∪ E′′.

2. Let x0 = (x′0, x
′′
0) (The initial state of G is given by the cartesian product of the initial

states of G′ and G′′.)
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Figure 3.11: Layout of the manufacturing cell in Example 3.11

3. Let X = ∅ and Xnew = {x0}. (At the end of the algorithm X ⊆ X ′ ×X ′′ will contain all
states of G, while the set Xnew contains at each step the states of G still to be explored.)

4. Select a state x = (x′, x′′) ∈ Xnew.

(a) For all e ∈ E:

i. Let

δ(x, e) =



(x̄′, x′′) if e ∈ E′ \ E′′, δ′(x′, e) = x̄′

(x′, x̄′′) if e ∈ E′′ \ E′, δ′′(x′′, e) = x̄′′

(x̄′, x̄′′) if e ∈ E′ ∩ E′′, δ′(x′, e) = x̄′, δ′′(x′′, e) = x̄′′

undefined otherwise

ii. If state x̄ = δ(x, e) is defined and x̄ ̸∈ X ∪Xnew then Xnew = Xnew ∪ {x̄}.
(b) Let X = X ∪ {x} and Xnew = Xnew \ {x}.

5. If Xnew ̸= ∅ then go to 4.

6. Let Xm = X ∩ (X ′
m × X ′′

m) (A state x of G is final if is the cartesian product of a final
state of G′ and a final state of G′′. ■

An example of application of this algorithm is now given.

Example 3.11 Consider a manufacturing cell composed by a robot and a buffer of capacity 2.
The robot picks-up parts from a conveyor that is always full (event a) and deposit them into the
buffer (event b). Parts in the buffer can be taken (event c) to leave the cell. The layout of this cell
is shown in Fig. 3.11.

The DFA on alphabet E′ = {a, b} in Fig. 3.12 (a) describes the robot whose states are idle (x′0)
and working (x′1). The DFA on alphabet E′′ = {b, c} in Fig. 3.12 (b) describes the buffer whose
state is given by number k of parts it contains (x′′j for j = 0, 1, 2).

The robot, if idle, may pick-up a part independently of the state of the buffer. Similarly, if the
buffer is not empty a part can be taken from the buffer regardless of the state of robot. This
is formalized by the fact that a is a private event of G′, while c is a private event of G′′. On
the contrary the deposit of a part in the buffer may only occur if the robot has picked-up a part
(state x1’) and if the buffer is not full (state x′′0 or x′′1). This is formalized by the fact that b is a
synchronized event and occurs simultaneously in both modules.
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Figure 3.12: (a) Model of a robot; (b) model of a buffer of capacity 2; (c) their concurrent compo-
sition.

The model that describes the overall system is the DFA in Fig. 3.12 (c), obtained the concurrent
composition of two modules.

At step 1 of the algorithm the alphabet of the G is defined as E = {a, b, c}.

At step 2 the initial state of the G is defined as x0 = (x′0, x
′′
0).

At step 3 we let X = ∅ and Xnew = {(x′0, x′′0)}.

At step 4 we select (x′0, x
′′
0) ∈ Xnew. Private event a of G′ is active in x′0 and yields x′1, thus

δ((x′0, x
′′
0), a) = (x′1, x

′′
0), and we add (x′1, x

′′
0) to set Xnew. Private event c of G′′ is not active in

x′′0 , thus δ((x′0, x
′′
0), c) is undefined. Synchronized event b is not active in x′0 and active in x′′0 , thus

δ((x′0, x
′′
0), b) is undefined: in fact, to be defined the event must be active in both modules. We

move state (x′0, x
′′
0) from Xnew to X .

At step 5 we since Xnew = {(x′1, x′′0)} we go back to step 4.

At step 4 again, we select (x′1, x
′′
0) ∈ Xnew. Private event a of G′ is not active in x′1, thus

δ((x′1, x
′′
0), a), is undefined. Private event c of G′′ is not active in x′′0 , thus δ((x′1, x

′′
0), c) is unde-

fined. Synchronized event b is active in x′1 yielding x′0 and is also active in x′′0 yielding x′′1 , thus
δ((x′1, x

′′
0), b) = (x′0, x

′′
1), and we add (x′0, x

′′
1) to set Xnew. We move state (x′1, x

′′
0) from Xnew to

X .

We keep repeating the loop until Xnew = ∅.

The different steps have been summarized in Table 3.1. At step 6 we determine Xm = X ∩
({x′0} × {x′′0}) = {(x′0, x′′0)}. ⋄

An important remark can be made concerning the cardinality of the state space of the composed
system. If we denote by n′ and n′′ the number of states of G′ and G′′, their concurrent composition
G can have up to n′ × n′′ states, because X ⊆ X ′ ×X ′′. Assume now we have k modules, each
with n states, their concurrent composition could have up to nk states. Therefore the cardinality
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E′ \ E′′ E′ ∩ E′′ E′′ \ E′

x a b c

(x′0, x
′′
0) (x′1, x

′′
0) — —

(x′1, x
′′
0) — (x′0, x

′′
1) —

(x′0, x
′′
1) (x′1, x

′′
1) — (x′0, x

′′
0)

(x′1, x
′′
1) — (x′0, x

′′
2) (x′1, x

′′
0)

(x′0, x
′′
2) (x′1, x

′′
2) — (x′0, x

′′
1)

(x′1, x
′′
2) — — (x′1, x

′′
1)

Table 3.1: Table summarizing the steps in Example 3.11.

of the state space of a composed system can grow exponentially with the number of modules that
compose it. This phenomenon, which has suggestively been called explosion of the state space, is
one of the major problems that one has to face when automata are used to model real-life systems.
This problem can be partly alleviated with the use of other discrete event models, such as Petri
nets.

3.6.3 Special cases

The concurrent composition operator considers two subsystems with alphabets of events E′ and
E′′ sharing a subset of synchronized events E′ ∩ E′′. Two special limit cases deserve to be
mentioned.

Shuffle: E′ ∩ E′′ = ∅

When E′∩E′′ = ∅ there are no synchronized events and the two alphabets E′ and E′′ are disjoint.

In such a case each system evolves independently from the other one and their concurrent compo-
sition is also called shuffle. We write

L = L′ ∥ L′′ = L′ ∥d L′′

for the shuffle of two languages or

G = G′ ∥ G′′ = G′ ∥d G′′

for the shuffle of two DFAs. Here subscript d denotes that the two alphabets are disjoint.

Intersection: E′ = E′′

When E′ = E′′ all events are synchronized and it also holds E = E′ ∪ E′′ = E′ = E′′.
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As it was remarked in Section 2.4, the concurrent composition of two languages with the same
alphabet coincide with their intersection and in this case it holds that

L = L′ ∥ L′′ = L′ ∩ L′′

and
G = G′ ∥ G′′ = G′ ∩G′′.

Thus Algorithm 3.3 can also be used to determine a DFA G = G′ ∩ G′′ that generates L(G) =
L(G′) ∩ L(G′′) and accepts Lm(G) = Lm(G′) ∩ Lm(G′′).



Chapter 4

Nondeterministic finite automata

In this section we introduce a second discrete event model, called nondeterministic finite automa-
ton, which can be seen as a generalization of a deterministic finite automaton. For further details
we refer to [5, 1].

4.1 Definition of nondeterministic finite automata

Definition 4.1 A nondeterministic finite automaton (NFA) is a 5-tuple

G = (X,E,∆, x0, Xm),

where:

• X is a finite set of states;

• E is an alphabet;

• ∆ ⊆ X × Eε ×X is the transition relation, with Eε = E ∪ {ε};

• x0 ∈ X is an initial state;

• Xm ⊆ X is a set of final states (or marked states). ▲

The transition relation specifies the dynamics of the automaton: if (x, e′, x̄) ∈ ∆, then from state
x the occurrence of an e′-transition (here e′ can be a symbol of the alphabet or the empty word)
leads to state x̄.

A graphical representation of an NFA can also be given using the same formalism we have pre-
sented for DFAs.

Example 4.1 Fig. 4.1 shows an NFA with X = {x0, x1, x2, x3, x4}, alphabet E = {a, b}, initial
state x0 and set of final states Xm = {x4}. The transition relation is given by:

∆ = { (x0, ε, x1), (x0, a, x0), (x0, b, x3)(x1, b, x0), (x1, b, x2),

(x2, a, x2), (x2, b, x4), (x3, a, x2), (x3, a, x4), (x4, a, x4) }.

41
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Figure 4.1: A nondeterministic finite automaton. 
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Figure 4.2: Two nondeterministic primitives.

⋄

An NFA can be seen as a generalization of a DFA. In fact, the transition relation ∆ is a generaliza-
tion of the transition function δ and introduces two different nondeterministic primitives as shown
in Fig. 4.2.

1. Transitions labeled with the empty word ε (also called ε-transitions). These transitions
describe “silent” or ’“unobservable” events that occur without being observed;

2. Two or more transitions outgoing from the same state and having the same label. These
transitions describe “indistinguishable events”, i.e., one detects that an event has occurred
but is not capable of determining exactly which, among two or more events with the same
label, has occurred.

As in the case of a DFA, the behavior of an NFA is given by all its possible evolutions characterized
by its runs.

Definition 4.2 Given an NFA G = (X,E,∆, x0, Xm), we define run of length k a sequence of
states and transitions

x(0)
e′1−→ x(1)

e′2−→ · · ·x(k−1)

e′k−→ x(k)

where: x(i) ∈ X for all i = 0, . . . , k and (x(i−1), e
′
i, x(i)) ∈ ∆ for all i = 1, . . . , k. Note that

e′i ∈ Eε may be an event in E or the empty word ε. We also say that this run starts from state x(0)
and produces word w = e′1e

′
2 · · · e′k reaching state x(k). ▲
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Example 4.2 A possible run of the automaton in Fig. 1.3 is the following

x0
a−→ x0

ε−→ x1
b−→ x0

a−→ x0
a−→ x0

This run starts from x0 and produces word w = abaa reaching x0. Note that in this case the
length of the word produced is smaller than that of the run: in fact |w| = 4, while the run contains
5 transitions. ⋄

Furthermore, since ∆ is a transition relation (and not a function), there can be two or more runs
that start from the same state and produce the same word. For example,

x0
a−→ x0

b−→ x3
a−→ x4

a−→ x4

is also a run that starts from state x0 and produces word w = abaa, reaching state x4.

This characteristic, i.e., the fact that the same word may be produced by multiple runs starting
from a given state, makes such automaton nondeterministic. This notion of nondeterminism may
seem different from the notion commonly used in systems theory, according to which a system is
deterministic if, starting from a given initial condition and given an input signal, there is only one
possible evolution. However the two notions coincide if we consider a word of events as the input
of the system and the run as its evolution.

To describe the runs of an NFA in a more compact way we introduce the following notation.

Definition 4.3 Given an NFA G = (X,E,∆, x0, Xm), the transitive and reflexive closure of the
transition relation ∆ is the relation ∆∗ ⊆ X × E∗ ×X such that (x,w, x̄) ∈ ∆∗ if there exists a
run

x
e′1−→ x(1)

e′2−→ · · ·x(k−1)

e′k−→ x̄

that starts from x and produces word w = e′1e
′
2 · · · e′k reaching state x̄.

Note that (x, ε, x) ∈ ∆∗ for all x ∈ X , i.e., starting from any state x with a run of length zero the
automaton remains in the same state and produces the empty word. ▲

Example 4.3 For the automaton shown in Fig. 1.3 it holds that

(x0, abaa, x0) ∈ ∆∗ and (x0, abaa, x4) ∈ ∆∗.

⋄

4.2 Languages of a nondeterministic finite automaton

The notion of word accepted by an NFA must be treated with particular care, because of nonde-
terminism.

Definition 4.4 Given an NFA G = (X,E,∆, x0, Xm), we say that a word w ∈ E∗ is:

• generated if there exists a state x ∈ X such that (x0, w, x) ∈ ∆∗, i.e., there exists a run that
produces w starting from the initial state;
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• accepted if there exists a state x ∈ Xm such that (x0, w, x) ∈ ∆∗, i.e., there exists a run
that produces w starting from the initial state and reaching a final state. ▲

Note that due to nondeterminism there may exist multiple runs generating the same word w from
the initial state. Word w is accepted if at least one of these runs leads a final state.

Example 4.4 Consider the automaton in Fig. 1.3. Word w = abaa can be generated by several
runs including the following two:

x0
a−→ x0

ε−→ x1
b−→ x0

a−→ x0
a−→ x0

x0
a−→ x0

b−→ x3
a−→ x4

a−→ x4

The first one does not leads to a final state. However, since the second run leads to state x4 that is
final, word abaa is accepted. ⋄

Definition 4.5 Given an NFA G = (X,E, δ, x0, Xm) one associates with it two languages.

• the generated language, i.e., the set of all generated words:

L(G) = {w ∈ E∗ | there exists x ∈ X : (x0, w, x) ∈ ∆∗} ⊆ E∗;

• the accepted language, i.e., the set of all accepted words:

Lm(G) = {w ∈ E∗ | there exists x ∈ Xm : (x0, w, x) ∈ ∆∗} ⊆ L(G).

▲

These languages and their prefix closures are related by the same relations that were previously
discussed for DFAs: Lm(G) ⊆ pref(Lm(G)) ⊆ L(G) = pref(L(G)).

We conclude this section defining the class of languages accepted by NFAs.

Definition 4.6 The class languages accepted by NFAs on an alphabet E is the set

LNFA = {L ⊆ E∗ | (there exists an NFA G) : L = Lm(G)},

that consists of all languages that can be accepted by some NFA. ▲

4.3 Properties of NFAs

The main properties of a DFA have been discussed in Section 4.3. All those properties that de-
pend of the graphical structure of DFA also apply to NFAs: this includes the properties discussed
in Definition 3.8 and Definition 3.9. However, language properties may change due to the nonde-
terminism.

As an example, according to Definition 3.6 and Definition 4.5, for all automata G (deterministic
or nondeterministic) pref(Lm(G)) ⊆ L(G) holds. Furthermore, in Proposition 3.1 we observed
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Figure 4.3: A blocking NFA G with pref(Lm(G)) = L(G).

that a DFA G is non-blocking if and only if pref(Lm(G)) = L(G). This result does not hold for
NFAs, because the same word may be generated by two or more runs, one that leads to a blocking
state and one that does not. Hence an NFA may be blocking even if pref(Lm(G)) = L(G) holds.

Example 4.5 Consider the NFA in Fig. 4.3, in which state x2 is blocking. It holds that Lm(G) =
{ban | n ≥ 0} and Lm(G) = {ε} ∪ {ban | n ≥ 0} = L(G). ⋄

In the case of NFAs a weaker property holds (no proof is given as it is substantially equivalent to
the proof of Proposition 3.1).

Proposition 4.1 An NFA G is blocking if pref(Lm(G)) ⊊ L(G). ■

4.4 Equivalence between NFAs and DFAs

In previous sections two classes of languages have been defined:

• LDFA : the class of languages accepted by DFAs;

• LNFA: the class of languages accepted by NFAs.

Since a DFA can be seen as a particular NFA, any language accepted by a DFA is also accepted
by an NFA and therefore the inclusion LDFA ⊆ LNFA holds. In this section we show that the
reverse inclusion LNFA ⊆ LDFA also holds. This leads to the conclusion that LNFA = LDFA

and therefore the two models DFAs and NFA describe the same class of languages.

To prove that the class of languages accepted by DFAs contains the class of languages accepted
by NFAs, we describe a procedure that, given an NFA Gn, determines a DFA Gd equivalent to it,
i.e., Gd accepts (resp., generates) the same language accepted (resp., generated) by Gn. For sake
of simplicity, no formal proof of the correctness of the algorithm is given.

The basic idea is the following. Suppose that in the NFA Gn word w can be generated by different
runs which reach different states, for example, x1, x2 and x3. Then in DFA Gd one will have a
single state called q = {x1, x2, x3} and the single run that generates w leads to this state. Thus
any state of Gd is a subset of states of Gn.

Algorithm 4.1 DFA equivalent to an NFA.
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Input: A NFA Gn = (X,E,∆, x0, Xm).
Output: A DFA Gd = (Q,E, δ, q0, Qm) with Lm(Gd) = Lm(Gn) and L(Gd) = L(Gn).

1. For all states x ∈ X of G compute the set

D∗
ε(x) = {x̄ ∈ X | (x, ε, x̄) ∈ ∆∗}

containing all states reachable from x executing zero or more ε-transitions. Note that by
definition x ∈ D∗

ε(x).

2. For all states x ∈ X of G and for all symbols e ∈ E compute the set

De(x) = {x̄ ∈ X | (x, e, x̄) ∈ ∆}

containing all states reachable from x executing exactly one e-transition.

3. Let q0 = D∗
ε(x0), i.e., the initial state of Gd is the set of states reachable in Gn from the

initial state x0 executing zero or more ε-transitions.

4. Let Q = ∅ and Qnew = {q0}. (At the end of the algorithm Q ⊆ 2X will contain all states
of Gd, while the set Qnew contains at each step the states of Gd still to be explored.)

5. Select a state q ∈ Qnew.

(a) For all e ∈ E:

i. Define the sets:

α(q, e) =
⋃
x∈q

De(x) and β(q, e) =
⋃

x∈α(q,e)
D∗

ε(x).

The first set contains the states reachable in Gn from a state x ∈ q executing
exactly one e-transition. The second set contains the states reachable in Gn from
a state x ∈ α(q, e) executing zero or more ε-transitions (see Fig. 4.4).

ii. Let q̄ = β(q, s) and define δ(q, e) = q̄. i.e., the occurrence of event e from state
q of Gd leads to q̄.

iii. If q̄ ̸∈ Q ∪Qnew then Qnew = Qnew ∪ {q̄}.
(b) Let Q = Q ∪ {q} and Qnew = Qnew \ {q}.

6. If Qnew ̸= ∅ then goto 5.

7. Let Qm = {q ∈ Q | q ∩ Xm ̸= ∅}, i.e., a state q of Gd is final if it contains at least one
final state of Gn. ■

We now consider an example of application of this algorithm.

Example 4.6 Consider the NFA Gn in Fig. 4.5 (a) to be determinized.
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Figure 4.4: Representation of the sets α(q, e) and β(q, e) defined in Algorithm 4.1.

x0 

x1 

x2 
x3 x4 

x5 

a

b

aε 

ε 

a

b

b
a

b

q0 = {x0, x2, x3} 

q1 = {x4, x5} 

q2 = {x1, x4} 

b

a

a

b 

a

a

(a) (b)

Figure 4.5: (a) A NFA; (b) a DFA equivalent to it.
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First we compute the sets D∗
ε and De as shown in the following table:

x D∗
ε(x) Da(x) Db(x)

x0 {x0, x2, x3} ∅ ∅
x1 {x1} {x1} {x0, x3}
x2 {x2, x3} ∅ ∅
x3 {x3} {x4, x5} ∅
x4 {x4} {x1, x4} ∅
x5 {x5} ∅ {x4, x5}

At step 3 we consider as initial state of Gd the state q0 = D∗
ε(x0){x0, x2, x3}.

At step 4 we have Q = ∅ and Qnew = {q0}.

At step 5 of the algorithm:

• Select from Qnew state q0 = {x0, x2, x3}.

For event a it holds that α(q0, a) = Da(x0)∪Da(x2)∪Da(x3) = {x4, x5} and β(q0, a) =
D∗

ε(x4) ∪D∗
ε(x5) = {x4, x5}, hence δ(q0, a) = q1 = {x4, x5}.

For event b it holds that α(q0, b) = ∅ and β(q0, b) = ∅, hence δ(q0, b) is not defined.

Update Q = {q0} and Qnew = {q1}.

• Select from Qnew state q1 = {x4, x5}.

For event a it holds that α(q1, a) = Da(x4)∪Da(x5) = {x1, x4} and β(q1, a) = D∗
ε(x1)∪

D∗
ε(x4) = {x1, x4}, hence δ(q1, a) = q2 = {x1, x4}.

For event b it holds that α(q1, b) = Db(x4) ∪Db(x5) = {x4, x5} and β(q1, b) = D∗
ε(x4) ∪

D∗
ε(x5) = {x4, x5}, hence δ(q1, b) = q1 = {x4, x5}.

Update Q = {q0, q1} and Qnew = {q2}.

• Select from Qnew state q2 = {x1, x4}.

For event a it holds that α(q2, a) = Da(x1)∪Da(x4) = {x1, x4} and β(q2, a) = D∗
ε(x1)∪

D∗
ε(x4) = {x1, x4}, hence δ(q2, a) = q2 = {x1, x4}.

For event b it holds that α(q2, b) = Db(x1) ∪Db(x4) = {x0, x3} and β(q2, b) = D∗
ε(x0) ∪

D∗
ε(x3) = {x0, x2, x3}, hence δ(q2, b) = q0 = {x0, x2, x3}.

Update Q = {q0, q1, q3} and Qnew = ∅.

We go to step 7 of the algorithm with Q = {q0, q1, q2} and since state x2 (the unique marked state
of Gn) is only contained in q0 one concludes that Qm = {q0}.

The different steps have been summarized in Table 4.1.

The graphical representation of the DFA Gd is given in Fig. 4.5 (b). ⋄
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q α(q, a) β(q, a) α(q, b) β(q, b)

q0 = {x0, x2, x3} {x4, x5} {x4, x5} ∅ ∅
q1 = {x4, x5} {x1, x4} {x1, x4} {x4, x5} {x4, x5}
q2 = {x1, x4} {x1, x4} {x1, x4} {x0, x3} {x0, x2, x3}

Table 4.1: Table summarizing the steps in Example 4.6.

In the previous example the set of states X of NFA Gn has cardinality |X| = 7, while the set of
state Q of the equivalent DFA Gd has cardinality |Q| = 3. In general, one cannot tell a priori
which of the two automata has a largest number of states. The only general result is the following.

Proposition 4.2 Given an NFA Gn with n states, let the equivalent DFA Gd constructed by Algo-
rithm 4.1 have n′ states. It holds that n′ < 2n.

Proof. Each state of Gd is a non-empty subset of states of Gn. The number of possible subsets of
states of Gn including the empty set is 2n. □

Note that in the worst case the cardinality of the state set of the equivalent DFA may be equal to
2n − 1, i.e., may be exponential in the number of states of the NFA.

4.5 Observers for partially observable systems

The equivalence between DFAs and NFAs is very significant from the point of view of language
theory. However, here we are also interested in a different interpretation of this result that origi-
nates from systems theory. The idea is that an NFA can be seen as a model of a partially observable
plant and its equivalent DFA is an observer, that allows one to estimate the state of plant.

In this section we will introduce this interpretation by means of examples. A more detailed and
formal discussion will be presented in the next chapter devoted to fault diagnosis.

As previously mentioned, in a NFA the same word w may be generated by different runs, all
starting from the initial state but possibly leading to different states. Thus there is in general some
uncertainty on the current state of NFA reached after w has been generated. We call the set of
states that may reached by a run generating word w as set of states consistent with w and denote it
X (w).

Example 4.7 Consider the NFA G in Fig. 4.5 (a). Word w = aba can be generated with the
following runs:

x0
ε−→ x2

ε−→ x3
a−→ x5

b−→ x4
a−→ x1

x0
ε−→ x2

ε−→ x3
a−→ x5

b−→ x4
a−→ x4

Thus the set of states consistent with this word is X (aba) = {x1, x4} ⋄
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Figure 4.6: An observer Obs(G) determines the set of states consistent with each word generated
by a nondeterministic automaton G.

Computing the set of states consistent with an observation is not easy: one has to consider all
possible runs and this may be time-consuming. For this reason, given an NFA G one would like
to construct an observer of G, i.e., a device Obs(G) which computes for each word w ∈ L(G) the
set of consistent states X (w) as in Fig. 4.6.

We already have the solution to this problem which we formalize as follows.

Remark 4.1 Given a NFA G = (X,E,∆, x0, Xm) we can use as observer

Obs(G) = (Q,E, δ, q0, Qm)

the DFA equivalent to G constructed using Algorithm 4.1. In fact:

• the languages generated by the two automata are the same, i.e., L(G) = L(Obs(G));

• for all w ∈ L(G) it holds that:

X (w) = δ∗(q0, w),

i.e., if in Obs(G) word w leads to a state q = δ∗(q0, w) ⊆ X then X (w) = q. ⋄

Example 4.8 Consider again NFA G in Fig. 4.5 (a) and its observer Obs(G) in Fig. 4.5 (b).

Consider word w = aba, to which corresponds a set of consistent states X (aba) = {x1, x4}, as
we have seen in the previous example. On Obs(G) word w = aba leads from the initial state q0
to state δ∗(q0, w) = q2 = {x1, x4}. As expected, X (aba) = δ∗(q0, w).

As an additional consideration, assume we are interested in using the observer to detect if the
current state of NFA G belongs to the subset Xsafe = {x4, x5}. Then given a generated word
w ∈ L(G) the observer tells us that:

• if w leads in Obs(G) to state q0 = {x0, x2, x3} then we can conclude that the current state
does not belong to Xsafe because Xsafe ∩ q0 = ∅;

• if w leads in Obs(G) to state q1 = {x4, x5} then we can conclude that the current state
belongs to Xsafe because q0 ⊆ Xsafe;

• if w leads in Obs(G) to state q2 = {x1, x4} then we cannot take any conclusion: the current
state may belong to Xsafe because Xsafe ∩ q0 ̸= ∅, or may not because q0 ̸⊆ Xsafe. ⋄
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Figure 4.7: (a) An AGV system; (b) a suitable DFA model G1 given the available sensors; (c) an
NFA model G2 corresponding to sensor breakdown; (d) the observer Obs(G2) of the NFA model.

4.6 Modeling with nondeterministic automata

We conclude this chapter by showing an example of modeling with NFAs. The general idea is that
given a physical systems endowed with a set of sensors that can detect the occurrence of events, a
nondeterministic model arises when sensors cannot adequately describe the system’s evolution.

Consider an AGV system as shown in Fig. 4.7 (a). An AGV entering the track from the left will
move right until it reaches a fork where it can take the upper branch or the lower one and finally
leave the system. Eventually a new AGV may enter and the process repeats.

Assume we have on the track eight sensors that can produce a signal when the AGV passes over
them. Sensor a1 is located at the entrance of the track, sensors a2 to a4 in the main track, sensors
a5 and a6 at the entrance of the two branches, and sensors a7 and a8 at the exit of the two branches.
The segments of tracks between sensors are denoted Ti, for i = 1, . . . , 6.

This system can be modeled by the DFA G1 in Fig. 4.7 (b). Here state T0 denotes the condition
when no AGV is in the system, while Ti, for i = 1, . . . , 6, denotes the presence of the AGV in the
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corresponding track segment. Events a1 to a8 correspond to the signals produced by the sensors.

Now assume that some of sensors may breakdown. In particular, we consider the case in which: a)
sensor a3 becomes inoperative so that no signal is produced at the passage of the AGV; b) sensors
a5 and a6, due to an incorrect positioning, are activated simultaneously at each passage of the
AGV, regardless of whether the upper or lower branch is taken. A suitable model of the system
under this degraded sensor configuration is the NFA G2 shown in Fig. 4.7 (c). Here the transition
from state T2 to T3 is labeled with the empty string ε to denote that no signal is produced when the
AGV passes on the sensor. Also the two transitions from state T4, one going to T5 and one going
to T6, are labeled with the same new event a to denote that we cannot distinguish between them.
Note that we have here both types of nondeterminism, i.e., silent events and indistinguishable
events.

In this case the sensors are not able to provide sufficient information to determine the current state
of the system based on the generated events. Now let us construct the DFA equivalent to the NFA
G2, i.e., the observer Obs(G2) using Algorithm 4.1. This model is shown in Fig. 4.7 (d). In this
model we are not able to distinguish between states T2 and T3 and also are not able to distinguish
between states T5 and T6. This can be interpreted saying that given the sensors available after
breakdown, we should give up trying to distinguish in which segment of the track between sensors
a2 and a3 the AGV is and to distinguish in which of the branches (upper or lower) the AGV is
after it passes the fork.



Chapter 5

Automata with inputs and outputs

In this chapter we consider two particular models, called Moore machine and Mealy machine,
whose evolution is driven by a sequence of inputs events and produces a sequence of events in
output.

5.1 Moore Machine

This model is a DFA that produces an output event that depends on its current state.

Definition 5.1 A Moore machine is a 6-tuple Gmo = (X,E,Θ, δ, λ, x0) where:

• X , E, δ and x0 are defined as in the case of a DFA (now E is called a input alphabet);

• Θ is an output alphabet;

• λ : X → Θ is the output function, i.e., the event λ(x) ∈ Θ is the output produced when the
machine is in state x. ▲

Assume that an input sequence w = e1e2 · · · ek ∈ E∗ corresponds the production1

xj0
e1−→ xj1

e2−→ · · ·xjk−1

ek−→ xjk

Then on this input the machine produces as output the sequence

v = λ(xj0)λ(xj1) · · ·λ(xjk) ∈ Θ∗.

Note that when the machine is initialized (i.e., when the input sequence is ε) an output λ(x0) is
produced: thus the length the output sequence is always one unit greater than that of the input
sequence.

The graphical representation of a Moore machine is similar to that of a DFA but each state x ∈ X
is labeled by λ(x).

1Such a production is unique because the machine is deterministic.
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Figure 5.1: A Moore machine for Example 5.1.

Example 5.1 The Moore machine in Fig. 5.1 represents the behavior of a monitoring device that
observes two types of events, a and b. If the last two observed events are both a’s, the device
produces the output A, if the last two observed events are both b’s, the device produces the output
B; otherwise produces Y . Here the input alphabet is E = {a, b} and the output alphabet is
Θ = {A,B, Y }. ⋄

The set of final states of a Moore machine is not defined. It should be noted, however, that the set
of final states of a DFA can be seen as a function that allows one to classify the states into two
classes: marked stated and non marked states marked.

However, the output function of a Moore machine allows one to classify the states in more than
two classes, namely as many classes as there are output symbols. Thus, a DFA can be seen as a
Moore machine with output alphabet Θ = {m, m̄}, where λ(x) = m if x is marked and λ(x) = m̄
if x is not marked. In this sense a Moore machine is a generalization of a DFA.

5.2 Mealy machine

This model is a DFA that produces an output event each time a transition occurs.

Definition 5.2 A Mealy machine / is a 6-tuple Gme = (X,E,Θ, δ, λ, x0) where:

• X , E, δ and x0 are defined as in the case of a DFA (now E is called a input alphabet);

• Θ is the output alphabet;

• λ : X ×E → Θ is the output function, i.e., λ(x, e) denotes the output event produced when
the transition δ(x, s) occurs. ▲

Assume that an input sequence w = e1e2 · · · ek ∈ E∗ corresponds the production

xj0
e1−→ xj1

e2−→ · · ·xjk−1

ek−→ xjk

Then on this input the machine produces as output the sequence

v = λ(xj0 , e1)λ(xj1 , e2) · · ·λ(xjk−1
, ek) ∈ Θ∗.
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a / Y b / Y

x0

a / Y

b / Y

a / A b / B
x2x1

Figure 5.2: A Mealy machine equivalent to the Moore machine in Fig. 5.1.

Note that when the machine is initialized (i.e., when the input sequence is ε) the machine does not
produce any output symbol: thus the length of the output sequence is equal to that of the input
sequence.

The graphical representation of a Mealy machine is similar to that of a DFA but each transition
δ(x, e) has a double label e/λ(x, e) specifying the input event e that cause the transitions and the
output λ(x, e) produced by the transition firing.

Example 5.2 The Mealy machine in Fig. 5.2 represents the same device described by the Moore
machine in Example 5.1 . There is just a minor difference between the two models. Assume that
a given input sequence produces on the Moore machine the output sequence Y ω, where ω ∈ Θ∗.
Then the same input sequence produces on the Mealy machine the output sequence ω. ⋄

Note, finally, that the Mealy machine of the example has a smaller number of states than the
equivalent Moore machine. This is because the possibility of associating labels to transitions
usually leads to more compact models.
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Chapter 6

Fault diagnosis and diagnosability using
automata

In this chapter we present the seminal results for the diagnosis of automata developed by Lafortune
and coworkers [6]. A detailed presentation of this approach can be found in [1].

There are two main features that characterize this framework.

• The system to be diagnosed is described as a partially observable discrete event system,
with observable and unobservable events. Faults are represented by unobservable events:
this not a restrictive assumption since the presence of faults whose occurrence could directly
observed makes the diagnosis problem trivial. Note that there may also exists unobservable
events that do not correspond to faults.

• The behavior of the nominal (fault-free) plant and the faulty behavior are both known by
the agent that diagnoses the system. This information is captured into a single model that
describes the faulty plant. This means that the way in which the occurrence of the fault
affects the nominal evolution is known beforehand. This is not always the case in the fault
diagnosis of continuous systems, where faults can be simply described as deviations from
the nominal behaviors and a precise fault model may be missing.

6.1 Plant and fault model

The system to be diagnosed is modeled as a DFA. Since we are not interested in the set of final
states, we will denote such an automaton by G = (X,E, δ, x0). The behavior of the system is
described by the prefix-closed language L(G) generated by G.

The DFA G models both the normal and the faulty behavior. Its alphabet can be partitioned as
E = Eo ∪ Euo where:

• Eo: is the set of observable events;

• Euo: is the set of unobservable events. The set of unobservable events can be further parti-
tioned as Euo = Ef ∪ Ereg where
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x0 x2 
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Figure 6.1: A DFA G with set of observable events Eo = {a, b, c}, set of unobservable regular
events Ereg = {u1} and set of unobservable fault events Ereg = {uf}.

– Ef is the set of fault events1 ;

– Ereg is the set of regular events that, although not observable, do not describe a faulty
behavior.

In the rest of the chapter the following assumptions hold.

(A1) The DFA G does not contain dead states.

(A2) The DFA G does not contain cycles of unobservable events.

Assumption (A1) is made for the sake of simplicity. On the contrary, assumption (A2) is necessary
and ensures that the system G does not generate sequences of unobservable events whose length
can be infinite.

Example 6.1 Consider the automaton in Fig. 6.1. The set of observable events is Eo = {a, b, c}
while the set of unobservable events is Euo = {u1, uf}. In particular the set of regular events is
Ereg = {u1} and the set of fault events is Ereg = {uf}. The automaton satisfies both Assumption
A1 and A2. ⋄

Let us define the projection operator on the set of observable events.

Definition 6.1 Given a DFA G with alphabet E = Eo ∪ Euo, the projection operator on the set
of observable events is denoted by P : E∗ → E∗

o and is defined as

P (ε) = ε

P (e) = e, if e ∈ Eo ;

P (e) = ε, if e ∈ Euo ;

P (se) = P (s)P (e), s ∈ E∗, e ∈ E .

The inverse projection operator, denoted by P−1 : E∗
o → 2E

∗
, associates with each word w ∈ E∗

o

of observable events the set P−1(w) = {s ∈ E∗ | P (s) = w}. ▲

1The set of fault events may also partitioned into m disjoint subsets that represent different of fault classes: Ef =
Ef,1 ∪Ef,2 ∪ . . .∪Ef,r. However, in the rest of this section we will consider a single fault class for sake of simplicity.
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Figure 6.2: Observed word w ∈ E∗
o corresponding to event string s ∈ E∗ generated by DFA G

observed through a projection mask P : E∗ → E∗
o .

Thus, the projection operator P simply “erases” the unobservable events in a string, while the
inverse projection associates with a sequence w of observable events the set of strings in E∗ whose
projection is w. In the rest of this section we will denote by s ∈ E∗ a string of events generated
by the DFA and by w ∈ E∗

o an observed word.

Assume that a DFA, starting from the initial state, generates string s ∈ E∗ thus reaching a new
state x = δ∗(x0, s). Due to the projection mask, an external agent observes a word w = P (s) ∈
E∗

o , as shown in Fig. 6.2. In general, however, the external agent may not be able to detect the
exact string that has produced this observation or the exact state that has been reached. Thus,
for all practical purposes we can consider the DFA G together with the mask P as a NFA (see
Fig. 6.2).

Definition 6.2 Given a DFA G = (X,E, δ, x0) with alphabet E = Eo ∪ Euo, for each word
w ∈ E∗

o we define:

• S(w) = P−1(w) ∩ L(G) ⊆ L(G) the set of strings consistent with observation w, i.e., the
set of strings in the language of G that produce observation w;

• X (w) = {x ∈ X | (∃s ∈ S(w)) δ∗(x0, s) = x} the set of states consistent with observation
w, i.e., the set of states in which G may be after w has been observed. ▲

Note that in the definition above we can see S(w) = P−1(w) ∩ L(G) as an operator S : E∗
o →

2L(G) which associates with a string w of observable events the set of strings in L(G) whose
observable projection is w.

Example 6.2 Consider the automaton in Fig. 6.1 with set of observable events Eo = {a, b, c}.

Assume word bb is observed. Two different evolutions may have produced this observation:

x0
b−→ x1

u1−→ x0
b−→ x1

x0
b−→ x1

u1−→ x0
b−→ x1

u1−→ x0

Hence for this observation the set of consistent strings is S(bb) = {bu1b, bu1bu1} while the set
of consistent states is X (bb) = {x0, x1}.

Consider word bc ∈ E∗
o . Since no string generated by the plant can produces this observation it

holds that S(bc) = X (bc) = ∅. ⋄
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An additional notation we will use if the following.

Definition 6.3 Given a string s ∈ E, the support of s is

||s|| = {e ∈ E | |s|e > 0} ⊆ E,

and consists of the set of events that appear at least once in the string. ▲

Example 6.3 Consider again the automaton in Fig. 6.1 whose alphabet is E = {a, b, c, u1, uf}.
The support of string s = aufac ∈ E∗ is ||s|| = {a, c, uf}. ⋄

6.2 Diagnosis

6.2.1 Diagnosis problem

In a fault diagnosis problem we want to determine, based on the observed word w ∈ E∗
o , if a fault

has occurred, i.e., if a transition labeled with a symbol in Ef has fired. This leads to the definition
a diagnosis problem.

Problem 6.1 Given a DFA G with alphabet E = Eo ∪ Euo and set of fault events Ef ⊆ Euo

and given an observed word w ∈ E∗
o , the diagnosis problem consists in determining if a fault

has occurred, i.e., if an evolution containing a transition with a label in Ef has produced the
observation w.

Solving a diagnosis problem requires constructing a diagnosis function.

Definition 6.4 Given a DFA G with alphabet E = Eo ∪ Euo and set of fault events Ef ⊆ Euo, a
diagnosis function

φ : E∗
o → {N,F,U}

associates with each observed word w ∈ E∗
o a diagnosis state φ(w) ∈ {N,F,U} as follows.

• φ(w) = N (no fault): if for all s ∈ P−1(w) it holds that ||s|| ∩ Ef = ∅. In such a case
no string s consistent with the observed word w contains a fault event, hence no fault has
occurred.

• φ(w) = F (fault): if for all s ∈ P−1(w) it holds that ||s|| ∩ Ef ̸= ∅. In such a case
all strings s consistent with the observed word w contain a fault event, hence a fault has
certainly occurred.

• φ(w) = U (uncertain): if there exist s′, s′′ ∈ P−1(w) such that ||s′|| ∩ Ef = ∅ and
||s′′||∩Ef ̸= ∅. In such a case there exists two strings s′ and s′′ consistent with the observed
word w, one containing a fault event and one not containing a fault event, hence a fault may
or may not have occurred. Such an observation w is called ambiguous. ▲

We remarks that when different fault classes Ef,1, Ef,2, . . . , Ef,r are given, one wants to diagnose
separately each class i determining if a fault in this class has occurred, i.e., if a transition labeled
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with a symbol in Ef,i has fired. This can be done solving r diagnosis problems, i.e., constructing
r diagnosis functions φi, for i = 1, 2, . . . , r. However, this case will not be discussed.

Example 6.4 Consider the DFA in Fig. 6.1 with set of observable events Eo = {a, b, c} and set
of fault events Ereg = {uf}. The diagnosis function for this DFA is partially described in the
following table where we have also listed for each observed word w the set of consistent strings
S(w) and the set of consistent states X (w).

w S(w) = P−1(w) X (w) φ(w)

ε ε {x0} N

a { a, auf } {x0, x2} U

b { b, bu1 } {x0, x1} N

aa { aufa, aufauf } {x0, x2} F
...

...
...

...

⋄

6.2.2 Diagnoser

A more interesting way of representing a diagnosis function is by means of a diagnoser, i.e., a
device that takes in input an observed word w ∈ Eo and produces in output the corresponding
diagnosis state φ(w) ∈ {N,F,U}, as in Fig. 6.3.

Here we propose an algorithm based on three steps for constructing the diagnoser as another DFA.
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Figure 6.3: A diagnoser Diag(G) computes the diagnosis state φ(w) ∈ {N,F,U} corresponding
to any observation w ∈ E∗

o produced by a plant G subject to faults.

Step 1

Let us first define a simple DFA whose only purpose is to classify all strings in E∗ into two classes:
those that do not contain a fault event and those containing one or more fault events.

Definition 6.5 (Fault monitor) Given an alphabet E and a set of fault events Ef ⊆ E, a fault
monitor is the DFA

M = (XM , E, δM , xM,0)

on alphabet E with:

• set of states XM = {N,F};
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Figure 6.4: General structure of fault monitor M on alphabet E with set of fault events Ef ⊆ E. 
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Figure 6.5: Fault monitor M for the automaton in Fig. 6.1.

• initial state xM,0 = N ;

• transition function δM : XM × E → XM such that:

δM (N, e) = N if e ∈ E \ Ef

δM (N, e) = F if e ∈ Ef

δM (F, e) = F for all e ∈ E

The general structure of a fault monitor is shown in Fig. 6.4. ▲

The fault monitor is a complete DFA and thus it generates language L(M) = E∗. Also, given a
string s ∈ E∗ it holds that δM (N, s) = N if and only if ||s|| ∩ Ef = ∅, i.e., strings that do not
contain a fault event lead to state N , while strings that contain a fault event lead to state F .

Example 6.5 Consider again the DFA G in Fig. 6.1. The set of observable events is Eo =
{a, b, c}, the set of regular events is Ereg = {u1} and the set of fault events is Ereg = {uf}.
The fault monitor M for this automaton is shown in Fig. 6.5. ⋄

Step 2

The concurrent composition of a DFA G with a fault monitor is a new DFA that we call fault
recognizer. It allows one to classify all strings generated by G into two classes: those that do not
contain a fault event and those containing one or more fault events.

Definition 6.6 (Fault recognizer) Given DFA G = (X,E, δ, x0) with alphabet E and a set of
fault events Ef ⊆ E, let M = ({N,F}, E, δM , N) be its fault monitor.

The fault recognizer for G is the DFA

Rec(G) = G ∥ M
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Figure 6.6: Fault recognizer Rec(G) = G ∥ M obtained by the concurrent composition of the
DFA G and of the fault monitor M in Example 6.6.

obtained by the concurrent composition of G and M . ▲

This automaton has alphabet E and generates language L(Rec(G)) = L(G). It has the following
structure:

Rec(G) = (XR, E, δR, xR,0)

with:

• set of states XR ⊆ X × {N,F};

• initial state xR,0 = (x0, N);

• transition function δR : XR × E → XR.

The transition function of the fault recognizer can be described as follows. Given a string s ∈
L(G) let δ(x0, s) = x, i.e., in G s leads to state x. Then in Rec(G) it holds that δR((x0, N), s) =
(x,N) if ||s|| ∩ Ef = ∅ (s does not contain a fault event) and δR((x0, N), s) = (x, F ) otherwise
(s contains a fault event).

Example 6.6 Consider again the DFA G in Fig. 6.1 whose fault monitor M was shown in Fig. 6.5
(see Example 6.5). The fault recognizer Rec(G) = G ∥ M is shown in Fig. 6.6.

String s = acu1 in G leads to state x0; since s does not contains the fault event, in Rec(G) this
string leads to state (x0, N). String s′ = aufb in G leads to state x1; since s′ contains the fault
event, in Rec(G) this string leads to state (x1, F ). ⋄

Step 3

We can finally define the diagnoser as the observer of the fault recognizer with respect to the set
of observable events Eo,.

Definition 6.7 Given a DFA G with alphabet E = Eo ∪Euo and set of fault events Ef ⊆ Euo let
Rec(G) be its fault recognizer.
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The diagnoser of G if the DFA

Diag(G) = Obs(Rec(G))

obtained by determinization of the fault recognizer with respect to the set of observable events Eo,
i.e., assuming all events in Euo are replaced by the empty string ε. ▲

This automaton has alphabet Eo and generates language L(Diag(G)) = P (L(G)). It has the
following structure:

Diag(G) = (Y,Eo, δy, y0)

with

• Y ⊆ (X × {N}) ∪ (X × {F}), i.e., each state of the diagnoser is a set of pairs

y = {(x1, γ1), (x2, γ2), . . . , (xk, γk)},

where xi ∈ X and γi ∈ {N,F}, for i = 1, 2, . . . , k.

• δ∗y(y0, w) = yw if and only if

yw = {(x,N) | (∃s ∈ S(w)) δ∗(x0, s) = x, ||s|| ∩ Ef = ∅}
∪{(x, F ) | (∃s ∈ S(w)) δ∗(x0, s) = x, ||s|| ∪ Ef ̸= ∅},

i.e., in Diag(G) starting from y0 word w leads to state yw containing:

(a) all pairs (x,N) where x can be reached in G executing a string consistent with w that
does not contain a fault event;

(b) all pairs (x, F ) where x can be reached in G executing a string consistent with w that
contains a fault event.

Definition 6.8 (Diagnosis value) To a state y = {(x1, γ1), (x2, γ2), . . . (xk, γk)} of Diag(G) we
associate a diagnosis value φ(y) such that:

• φ(y) = N (no fault state): if γi = N for all i ∈ {1, . . . , k};

• φ(y) = F (fault state): if γi = F for all i ∈ {1, . . . , k};

• φ(y) = U (uncertain state): if γi = N and γj = F for some i, j ∈ {1, . . . , k}. ▲

Thus a diagnoser allows one to associate with each observed word w ∈ E∗
o a diagnosis state

φ(w) = φ(yw) where yw = δ∗y(y0, w) is the state reached in Diag(G) by executing word w.
Furthermore, the diagnoser also contains the information on the set of states consistent with w,
because X (w) = {x ∈ X | yw = δ∗y(y0, w), (x, γ) ∈ yw}.

Example 6.7 Consider the plant in Fig. 6.1 with set of observable events Eo = {a, b, c} and set of
fault events Ef = {uf}. The diagnoser for this DFA, which is the observer of the fault recognizer
Rec(G) in Fig. 6.6, is shown in Fig. 6.7. Here we have labeled each state y of Diag(G) with its
corresponding diagnosis value φ(y) in square brackets. ⋄
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Figure 6.7: Diagnoser automaton Diag(G) for the DFA G in Fig. 6.1.

We conclude with a remark which relates the size of the diagnoser with that of the plant.

Proposition 6.1 Given a plant G with n states, assume it diagnoser Diag(G) has n′ states. It
holds n′ < 22n.

Proof. Each state of Diag(G) is a non-empty subset of elements in the cartesian product (X ×
{N}) ∪ (X × {F}) of cardinality 2n. The number of possible subsets of this cartesian product,
including the empty set, is 22n. □

6.3 Diagnosability

Let us now define a fundamental property relative to fault diagnosis.

Definition 6.9 A DFA G with alphabet E = Eo ∪ Euo and set of fault event Ef ⊆ Euo is
diagnosable if for all strings vuf ∈ L(G) such that uf ∈ Ef there exists a non-negative integer
n ∈ N such that

s = vufz ∈ L(G), |z| ≥ n =⇒ ̸ ∃s′ ∈ L(G) ∩ (E \ Ef )
∗ such that P (s) = P (s′).

▲

This property can also be expressed as follows:

A system is diagnosable if, after the occurrence of a fault the produced observation
can remain ambiguous only for finite number of steps.

In fact, assume that the plant generates a string vuf that ends with a fault and the evolution con-
tinues. After a finite number of steps n (that may depend on vuf ), when the observed word is
s = vufv there exists no other string s′ in the language of the plant that contains no fault and
generates the same observation of s. This ensures that whenever a fault event uf occurs, after a
finite number of steps we will detect its occurrence because we will observe a word that is not
consistent with any fault-free string.
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Problem 6.2 Given a DFA G with alphabet E = Eo ∪ Euo and set of fault event Ef ⊆ Euo, the
diagnosability problem consists in determining if G is diagnosable.

We will show that the diagnoser, that provides a solution to the diagnosis problem, can also be
a useful tool to solve the diagnosability problem. First, however, we need to introduce some
definitions.

Definition 6.10 Given a diagnoser Diag(G), a cycle

y(1)
e1−→ y(2)

e2−→ · · · ek−1−→ y(k)
ek−→ y(1)

is called an uncertain cycle if all its states are uncertain, i.e., φ(y(i)) = U for i = 1, 2, . . . , k. ▲

As a preliminary result, we can now state a sufficient condition for diagnosability.

Proposition 6.2 A DFA G is diagnosable if its diagnoser does not contain uncertain cycles.

Proof. We prove this by contraposition, showing that if a DFA is not diagnosable then its diagnoser
must contain uncertain cycles.

Assume in fact that G is not diagnosable. Then the following situation must occur:

• G can generate a string s = vuf containing the fault;

• this string can be extended indefinitely (by Assumption A2) to a chain of strings sk =
vufe1e2 . . . ek (for all k ≥ 1) which produce ambiguous observations, i.e., there exist fault-
free strings s′k ∈ L(G) ∩ (E \ Ef )

∗ (for k ≥ 1) such that wk = P (sk) = P (s′k).

When this occurs, in the diagnoser the observed words w = P (s) yields an uncertain state and
from that state, as k grows, the infinite observations wk = P (sk) = P (s′k) (for k ≥ 1) keep
yielding uncertain states. Since the number of states of the diagnoser is finite, this is only possible
if there exists a cycle of uncertain states. □

Example 6.8 Consider again the DFA in Fig. 6.1 whose diagnoser was shown in Fig. 6.7. One can
see that there exist in this diagnoser the 6 elementary cycles shown below (we have also reported
the diagnosis state of each state along the cycle for a better understanding):

y1 [U ]
c−→ y3 [N ]

a−→ y1 [U ] y3 [N ]
b−→ y3 [N ] y2 [F ]

b−→ y4 [F ]
a−→ y2 [F ]

y2 [F ]
c−→ y4 [F ]

a−→ y2 [F ] y2 [F ]
a−→ y2 [F ] y4 [F ]

b−→ y4 [F ]

None of these cycles is uncertain, hence we conclude that the DFA is diagnosable. ⋄

Next example shows that this sufficient condition for diagnosability is not necessary however.

Example 6.9 Consider the DFA G in Fig. 6.8 (a) with set of observable events Eo = {a, b} and
set of fault events is Ef = {uf} (here Ereg = ∅). The fault recognizer Rec(G) for this DFA is
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Figure 6.8: (a) DFA G in Example 6.9; (b) fault recognizer Rec(G); (c) diagnoser Diag(G).

shown in Fig. 6.8 (b) and the diagnoser Diag(G) is shown in Fig. 6.8 (c). One can see that there
exists in the diagnoser a cycle of uncertain states

y0 [U ]
a−→ y1 [U ]

b−→ y0 [U ].

However one can verify by inspection that this DFA is diagnosable. In fact, after a fault occurs state
x2 is reached. Since the only active event in x2 is a, one will eventually observe two consecutive
a’s which cannot be generated by the fault-free system2 and the fault is detected.

To be more precise, we observe that state x2 can only be reached by a faulty strings = vuf and
two choices are possible for such a v.
(a) If v = (ab)k, after two more events occur the generated string becomes s = (ab)kufaa whose
projection is w = P (s) = (ab)kaa.
(b) If v = (ab)ka, after one more event occurs the generated string becomes s = (ab)kaufa
whose projection is again w = P (s) = (ab)kaa.
In both cases, as soon as one observes two consecutive a’s the fault is detected. ⋄

The previous example shows that the presence in a diagnoser of an uncertain cycle implies that
the plant may generate an infinitely long chain of ambiguous observations (e.g., in the previous
example such a sequence is given by sk = (ab)k) but does not ensure that, upon the occurrence
of a fault, the faulty sequence could be infinitely extended to produce ambiguous observations, a
condition which would violate diagnosability.

To derive a general necessary and sufficient condition for diagnosability we need to introduce an
additional concept.

Let us first observe that the diagnoser Diag(G) = (Y,Eo, δy, y0) is the observer of the fault
recognizer Rec(G) = (XR, E, δR, xR,0), constructed treating all unobservable events in Euo as
if they were the empty string ε. The observer construction presented in Algorithm 4.1 computes
the transition δy(y, e) = ȳ from observer state y ⊆ XR to a new observer state ȳ ⊆ XR on the
occurrence of event e ∈ Eo as follows:

• first the set of states ȳ ′ = α(y, e) ⊆ XR is computed: this is the set of states of the fault
2The fault-free system Ḡ is obtained from G removing the fault events. Its language contains strings where events

a and b alternate, i.e., L(Ḡ) = {ε, a, ab, aba, abab, . . .}.
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recognizer that can be reached from a state in y by executing just a single e-transition;

• then ȳ = β(y, e) ⊆ XR is computed: this is the set of states of the fault recognizer that can
be reached from a state in y′ = α(y, e) by executing zero or more ε-transitions.

The information about the intermediate state ȳ ′ = α(y, e) is not kept in the diagnoser, because
it is not needed for solving the diagnosis problem. However, this info is required to solve the
diagnosability problem as explained in the following.

Definition 6.11 (Refined sequence associated to a cycle) Given a diagnoser, consider a cycle

y(0)
e1−→ y(1)

e2−→ · · · ek−1−→ y(k−1)
ek−→ y(k),

where y(k) = y(0). The refined sequence associated with such a cycle is the sequence obtained

replacing each state y(i) with sequence y′(i) −→ y(i)

for i = 1, · · · , k, where, using the notation in Algorithm 4.1, y′(i) = α(y(i−1), ei) and y(i) =

β(y(i−1), ei). Thus the refined sequence takes the form:

y(0)
e1−→ y′(1) −→ y(1)

e2−→ · · · ek−1−→ y′(k−1) −→ y(k−1)
ek−→ y′(k) −→ y(k).

With the new states y′(i) of the refined sequence one can associate a diagnosis value φ(y′(i)) ac-
cording to Definition 6.8. ▲

Definition 6.12 (Indeterminate cycle) An uncertain cycle of the diagnoser is called an indeter-
minate cycle if its refined sequence contains only states whose diagnosis value is [U]. ▲

We can finally present the following result which provides a necessary and sufficient condition for
diagnosability.

Theorem 6.1 A DFA G is diagnosable if and only if its diagnoser Diag(G) does not contain
indeterminate cycles. ■

Example 6.10 Consider again the DFA Fig. 6.8 and studied in Example 6.9. We have already
pointed out that there exists in the diagnoser a single uncertain cycle shown in Fig. 6.9 (top).

This cycle can also be written

y0
b−→ y1

a−→ y0 and its associated refined sequence y0
b−→ y′1−→y1

a−→ y′0−→y0

is represented in Fig. 6.9 (bottom). In the figure we have labeled each state of the refined sequence
with its diagnosis value and have shown how each state of the sequence is computed from the
preceding one by means of functions α and β.

We observe that this sequence contains state y′0 whose diagnosis value is [N]. According to Def-
inition 6.12, the uncertain cycle of the diagnoser is not indeterminate and by Theorem 6.1 we
conclude that the system is diagnosable. This is consistent with the qualitative discussion pre-
sented in the previous Example 6.9. ⋄
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Figure 6.9: Uncertain cycle (top) and corresponding refined sequence (bottom) for the diagnoser
in Fig. 6.8.
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Figure 6.10: (a) DFA G in Example 6.11; (b) fault recognizer Rec(G); (c) diagnoser Diag(G).

Finally we present an example of a non-diagnosable DFA.

Example 6.11 Consider the DFA G in Fig. 6.10 (a) with set of observable events Eo = {a, b, c},
set of regular events Ereg = {u1} and set of fault events Ef = {uf}. The fault recognizer Rec(G)
for this DFA is shown in Fig. 6.10 (b) and the diagnoser Diag(G) is shown in Fig. 6.10 (c).

There exist in the diagnoser two uncertain cycles.

The first cycle is shown in Fig. 6.11 (top). This cycle can also be written

y0
a−→ y1

c−→ y0 and its associated refined sequence y0
a−→ y′1−→y1

c−→ y′0−→y0

is represented in Fig. 6.11 (bottom). This sequence contains state y′0 whose diagnosis value is [N]
hence this uncertain cycle is not indeterminate.

The second cycle is shown in Fig. 6.12 (top). This cycle can also be written

y1
b−→ y2

a−→ y1 and its associated refined sequence y1
b−→ y′2−→y2

a−→ y′1−→y1
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Figure 6.11: First uncertain cycle (top) and corresponding refined sequences (bottom) for the
diagnoser in Fig. 6.10.
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Figure 6.12: Second uncertain cycle (top) and corresponding refined sequences (bottom) for the
diagnoser in Fig. 6.10.

is represented in Fig. 6.12 (bottom). In this sequence all states have diagnosis value [U] hence this
uncertain cycle is indeterminate. Since the diagnoser has an indeterminate cycle, we conclude that
the system is not diagnosable.

Note in fact that the faulty strings sk = uf (abu1)
k (for k ≥ 0) can have arbitrary length after the

fault and observations wk = P (uf (abu1)
k) = (ab)k which are ambiguous because may also be

produced by the non-faulty strings s′k = (ab)k. ⋄



Chapter 7

Supervisory control

This chapter is devoted to supervisory control theory originated from the work of Ramadge and
Wonham [7]. These authors defined a general framework for the control of logical discrete event
systems that has received much attention.

Following the classic feedback control paradigm of time-driven systems, in supervisory control
theory one considers a plant, i.e., a system to be controlled, whose evolution is guided by a control
agent called supervisor. Thus, we have the feedback scheme in Fig. 7.1 that shows the closed-loop
system, i.e., the plant subjected to the action of the supervisor.

 

 

Plant 
G 

Supervisor 
S 

ξ ∈ 2Ε w ∈ L(G) 

Figure 7.1: A plant G controlled by a supervisor S.

The supervisor observes the events generated by the plant and guides it evolution disabling some
events, i.e., preventing their occurrence. Note that according to this paradigm, the supervisor can
only restrict the behavior of the plant but can not extend it, that is, the closed-loop system cannot
generate a word that was not already in the language of the plant.

7.1 Plant, supervisor and closed-loop system

In this section we discuss the different components of the feedback control scheme considered in
supervisory control theory and shown in Fig. 7.1.

71
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 Figure 7.2: A plant G represented by a DFA.

7.1.1 Plant

In supervisory control theory a process G is a system to be controlled. Its behavior is described
by the sequences of events (i.e., language) it can generate on an alphabet E. In particular two
languages can be associated to a plant.

• the closed behavior L(G) ⊆ E∗ is a prefix-closed language composed by the set of se-
quences of events that the system may generate;

• the marked behavior Lm(G) ⊆ L(G) is the language composed by the sequences of events
generated by the system that correspond to the completion of certain tasks.

It is natural to use a deterministic finite automaton (DFA) to model a plant G: its closed behavior
corresponds to the generated language L(G) and its marked behavior corresponds to the accepted
language L(G).

7.1.2 Controllable and uncontrollable events

The following definition clarifies what are the possible control actions that a supervisor can enforce
on a plant.

Definition 7.1 The alphabet of events E of a plant is partitioned as follows

E = Ec ∪ Euc (with Ec ∩ Euc = ∅)

where Ec is the set of controllable events and Euc is the set of uncontrollable events. ▲

The idea is that when the plant is ready to execute a controllable event e ∈ Ec the supervisor can
disable the event, i.e., prevent it from occurring. On the contrary, the supervisor has no way of
preventing the occurrence of an uncontrollable event e′ ∈ Euc.

Example 7.1 Consider the DFA G in Fig. 7.2 where the character “:” denotes a controllable
event. In this case the alphabet E = {a, b, c, d, e, f} is partitioned into Ec = {a, b, d, f} and
Euc = {c, e}.

This DFA represents a printing press that when idle (initial state x0) can be inked (event a) so that
it is ready to print (state x1). From this state, the operator can start (event b) a printing operation
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(state x2) or can take the press (event d) off-line (state x3). When the press is printing (state x2) the
operation may terminate successfully (event c) bringing the press back to state x1, or a printing
error may occur (event e) and in this case the press goes autonomously off-line. Performing a
maintenance (event f ) brings back the machine from off-line to idle.

In this DFA the final state coincides with the initial one, to indicate that at the end of one or more
processing cycles the machine should go back to the idle state.

Concerning the sets of controllable and uncontrollable events, they have a clear physical meaning.
As an example, event a denotes the fact that the press is inked: this operation is performed by
the press operator and it is reasonable to assume that this event can be disabled by a supervisor
if necessary. The same applies to event b (start of a printing operation), event d (take the press
off-line) or event f (perform maintenance). On the contrary event e represents the occurrence of
a fault: obviously this is an undesirable event but there is no way for a supervisor to prevent it.
In a similar way we assume that event c is also uncontrollable, because once the press has started
printing there is no control action that can prevent it from successfully completing the operation.

⋄

7.1.3 Supervisor

As shown in Fig. 7.1 we assume that the supervisor observes the word of events w ∈ L(G)
generated by the plant G.

Since the action of the supervisor depends on the observed word w ∈ L(G) let us give a more
general definition of active events.

Definition 7.2 Consider a DFA G = (X,E, δ, x0, Xm).

For each state x ∈ X , the set of events active in G at state x is

AG(x) = {s ∈ E | δ(x, s) is defined }.

For each word w ∈ L(G) the set of events active in G after w is

AG(w) = {e ∈ E | we ∈ L(G)}.
▲

In this definition, for the sake of simplicity, the same notation AG is used to indicate two different
functions: a mapping AG : X → 2E and a mapping AG : L(G) → 2E . Clearly, for a DFA G
if state x = δ∗(x0, w) is reached from from the initial state x0 generating the word w, it holds
AG(w) = AG(x).

Example 7.2 For the plant in Fig. 7.2 one can write A(ε) = AG(x0) = {a}, AG(a) = AG(x1) =
{b, d}, AG(ab) = AG(x2) = {c, e} and so on. ⋄

After the plant has generated a word w ∈ L(G), an active controllable event e ∈ AG(w) ∩ Ec

can be disabled by the supervisor, i.e., the supervisor can prevent it from occurring. On the
contrary, the supervisor, has no way of preventing the occurrence of an active uncontrollable event
e′ ∈ A(w) ∩ Euc. Events that are not disabled by the supervisor are called enabled.



74 Chapter 7. Supervisory control

7.1.4 Control inputs

A supervisor drives the evolution of a plant by means of the control inputs it produces.

Definition 7.3 Given a plant G on the alphabet E, a control input is a subset of events ξ ⊆ E. We
denote by 2E the set of all possible control inputs. ▲

If e ∈ ξ then event e is enabled by the supervisor, while if e ̸∈ ξ, then e is disabled. Since
uncontrollable events can not be disabled by a supervisor, the following definition applies.

Definition 7.4 Given a plant G and a word w ∈ L(G), a control input ξ is called admissible after
w if Euc ∩ AG(w) ⊆ ξ, i.e., it contains all uncontrollable events that are active in G after w. ▲

Example 7.3 Consider the plant in Fig. 7.2. Control input ξ = {a, b, c} is admissible after a
because A(a) = {b, d} and, therefore, among all active events only controllable event d is dis-
abled. The same control input is not admissible after ab because AG(ab) = {c, e} and, therefore,
it disables the uncontrollable active event e. ⋄

We can finally give a formal definition of a supervisor.

Definition 7.5 A supervisor S controlling a plant G can be represented by a control function

f : L(G) −→ 2E ,

which generates a sequence of admissible control inputs ξ0, ξ1, ξ2, . . . ⊆ E

ξ0 = f(ε), ξ1 = f(e1), ξ2 = f(e1e2), · · ·

in response to the sequence of events w = e1e2 · · · ∈ L(G) generated by the plant. ▲

Note that in the previous definition we are assuming that, for all words w generated by the plant,
the control input f(w) produced by the supervisor is admissible after w.

Example 7.4 Consider again the plant in Fig. 7.2. Assume the supervisor wants to make sure that
each time the press is inked at most one printing operation can be performed, to ensure a print of
high quality. This means that after each events a (inking) at most one event b (start printing) may
occur until a new a is observed. In the left table in Fig. 7.3 is shown the control function f(w) of
a supervisor that can ensure this behavior.

As one can see from the table, initially the supervisor does not block any event, i.e., f(ε) =
f(a) = E. However as soon as ab is observed (hence a printing operation has started) it will
disable event b until a new a is observed, i.e., f(ab) = f(abc) = f(abcd) = f(abcdf) = E \ {b}
and f(abcda) = E. ⋄
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w x ξ = f(w)

ε x0 E

a x1 E

ab x2 E \ {b}
abc x1 E \ {b}
abcd x3 E \ {b}
abcdf x0 E \ {b}
abcda x1 E

· · · · · · · · ·
ad x3 E

adf x0 E

adfa x1 E

· · · · · · · · ·

w x x̂ = δ̂(x̂0, w) ξ = AS(x̂)

ε x0 x̂0 E

a x1 x̂0 E

ab x2 x̂1 E \ {b}
abc x1 x̂1 E \ {b}
abcd x3 x̂1 E \ {b}
abcdf x0 x̂1 E \ {b}
abcda x1 x̂0 E

· · · · · · · · · · · ·
ad x3 x̂0 E

adf x0 x̂0 E

adfa x1 x̂0 E

· · · · · · · · · · · ·

Figure 7.3: Control function in Example 7.4 (left). Control function in Example 7.5 (right).

7.2 Supervisors as a DES and closed-loop system

Although we have previously defined a supervisor as a function f : L(G) → 2E , it is also possible
to represent a supervisor as a discrete event system, i.e., as a DFA S = (X̂, E, δ̂, x̂0, X̂m) on the
same alphabet of the plant G = (X,E, δ, x0, Xm).

This is how a DFA supervisor works. Each time an event is generated by the plant, the same event
is executed by the supervisor. When the supervisor is in a given state x̂ it sends to the plant a
control input AS(x̂) that contains all events that are active in S from state x̂.

Thus we have the following procedure that describes the evolution of the closed-loop system.

Procedure 7.1 (Evolution of a closed-loop system) A plant G = (X,E, δ, x0, Xm) controlled
by a supervisor S = (X̂, E, δ̂, x̂0, X̂m) is given.

1. Initially the plant G is in state x = x0 and the supervisor is in state x̂ = x̂0.

2. Let w = ε.

3. The supervisor produces the control input ξw = AS(x̂).

4. The plant generates an event e ∈ AG(x) ∩ ξw and goes to state x′ = δ(x, e).

5. The supervisor executes event e and goes to state x̂′ = δ̂(x̂, e).

6. Let w = we, x = x′, x̂ = x̂′.

7. Goto 3



76 Chapter 7. Supervisory control

 

b 

a 

a,c,d,e,f 

S 

c,d,e,f 

x̂1 x̂0 

Figure 7.4: A DFA supervisor for the plant in Fig. 7.2.

An example will clarify this procedure.

Example 7.5 The supervisor described in Example 7.4 can also be represented as the DFA S on
alphabet E shown in Fig. 7.4. The DFA has two states: in state x̂0 all events are active, i.e.,
enabled. As soon as a b occurs, S moves to state x̂1 where b is not active, i.e., disabled. The
occurrence of event a brings S back to state x̂0.

To show that S is equivalent to the supervisor described by table on the left hand side of Fig. 7.3,
in the same figure we have shown on the right hand side the control inputs produced by S. For
each word generated by the plant under control, the state x̂ reached by S is shown and also the set
of active events that determine the control input. Comparing the two tables in Fig. 7.3, one can
immediately verify that they describe the same control law. ⋄

One important advantage of having a supervisor represented as DFA is that it is immediate in
this case to determine the DFA that represents the closed-loop system. In fact if we consider
Procedure 7.1 we can immediately understand that a word w generated by the closed-loop system
is both a word of G (because generated by the system) and a word of S (because at each step the
generated event belongs to the control input and hence it is active in S).

Definition 7.6 Consider a plant G controlled by a supervisor S. The closed-loop system is the
automaton1 S/G = G ∩ S = G ∥ S, whose closed language is L(S/G) = L(G) ∩ L(S) and
whose marked language is L(S/G) = L(G) ∩ L(S). ▲

Note that we can write G∩S = G ∥ S because S and G have the same alphabet. Thus it is possible
to construct the closed-loop system using the concurrent composition operator ∥ presented in the
previous chapter.

We remark that when we consider a DFA supervisor S there are two possibilities.

• Non-marking supervisor. The supervisor does not specify which words are final and all
words that yield a final state in the plant are considered final. In this case we assume that the
set of final states of the supervisor is X̂m = X̂ (all its states are final) and thus the marked
language of the closed loop-system is

Lm(S/G) = Lm(G) ∩ Lm(S) = Lm(G) ∩ L(S)

i.e., contains all words accepted by the plant that survive under supervision.

1The name S/G (S over G) for the closed-loop systems denotes that it is obtained by the action of S over G.
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Figure 7.5: The closed-loop system in Example 7.6.

• Marking supervisor. The supervisor specifies which words are final and thus a word is final
if it yields a final state on both plant and supervisor. In this case we assume that the set of
final states of the supervisor is X̂m ⊊ X̂ (not all its states are final).

Example 7.6 Consider the plant G in Fig. 7.2 and controlled by the supervisor S shown in
Fig. 7.4. The closed-loop system S/G constructed by concurrent composition is shown in Fig. 7.5.
Note that in this case the supervisor is not marking: the marked states in the closed-loop systems
are all states (x, x̂) where x ∈ Xm, i.e., (x0, x̂0) and (x0, x̂1). ⋄

7.3 Control specifications

A specification describes what is the desired behavior of a controlled system: a supervisor must
be designed to ensure that the closed-loop system satisfies such a specification.

Here we consider two types of specifications.

Definition 7.7 (State specification) Given a plant whose state space is X , a state specification
consists in set L ⊆ X of legal states. ▲

Such a specification is shown in Fig. 7.6. States in the set F = X \ L are called forbidden states.
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Figure 7.6: A state specification L for a plant with state space X .
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Definition 7.8 (Language specification) Given a plant whose closed language is L(G) ⊆ E∗, a
language specification consists in a prefix-closed2 language K ⊆ E∗ of legal words. ▲

Such a specification is shown in Fig. 7.7. Strings in LK = L(G) ∩ K, which are generated by
the plant and are also legal, are called allowed words. Strings in FK = L(G) \ K, which are
generated by the plant but are not legal, are called forbidden words. 

 

legal 
words 

L(G) K 

E* 

forbidden 
words 

allowed 
words 

L 
K F 

K 

Figure 7.7: A language specification K for a plant with closed language L(G) ⊆ E∗.

In the following sections we will discuss how it is possible to design a supervisor capable of
enforcing these two types of specifications.

7.4 Supervisory design for state specifications

Let us first present the control problem we will address in this section.

Definition 7.9 (Control problem for state specifications) Consider a plant G with set of states
X and assume the specification consists in a set of legal states L ⊆ X . Find a maximally permis-
sive3 supervisor S such that the closed loop system will never reach a forbidden state in F = X\L.

▲

7.4.1 Weakly forbidden states

To prevent states in F = X \L from being reached, it is necessary to disable the firing all of events
leading from a state x ∈ L to a state x′ ∈ F . However, it may happen that from a legal state there
exists an uncontrollable sequence (i.e., a sequence composed by uncontrollable transitions) that
yields a forbidden state and such a sequence cannot be disabled by a supervisor. For this reason,
we need to introduce the following definition.

Definition 7.10 (Weakly forbidden states) Given a plant G = (X,E, δ, x0, Xm) and a set of

2A generalized version of this definition assumes that K may not be prefix-closed because it specifies the subset of
legal words that can be marked. In this case the set of legals words is pref (K).

3The notion of maximally permissive supervisor for a state specification will be clarified in the following.
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F
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L

wucEuc 
* 

Fweak

Figure 7.8: The set of weakly forbidden states Fweak ⊆ L contains all legal states in light red that
can uncontrollably reach a forbidden state.

legal states L, we define weakly forbidden states the set

Fweak = {x ∈ L | (∃wuc ∈ E∗
uc) δ

∗(x,wuc) = x′ ∈ F}

containing all those legal states of the plant from which a forbidden state is reachable by a sequence
that only contains uncontrollable events. ▲

This is shown in Fig. 7.8, where Fweak is given by the set of legal states from which a forbidden
state is reachable by an uncontrollable sequence (in light red).

Thus in the presence of uncontrollable events the supervisor must ensure that the plant does not
reach any forbidden or weakly forbidden state. The supervisor is maximally permissive if it only
prevents reaching forbidden or weakly forbidden states.

7.4.2 Designing a supervisor

We can finally present the following algorithm for constructing the desired supervisor.

Algorithm 7.1 Supervisory design for state specifications
Input: A plant G; a state specification L ⊆ X
Output: A maximally permissive supervisor S that is also the closed-loop system S/G.

1. Compute F ∪ Fweak, set of forbidden and weakly forbidden states of G.

2. If the initial state of G belongs to F ∪ Fweak then RETURN: there is no solution.

3. Trim G removing all states in F ∪ Fweak and their input output arcs.

4. The remaining structure is S and is also S/G. ■

The algorithm consists in trimming G, removing all forbidden and weakly forbidden states. Note
that if the final automaton S contains some unreachable states, it can be further trimmed to also
remove them (this obviously does not change the behavior of the closed-loop system).
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Figure 7.9: (a) A material handling system composed by two AGVs in Example 7.7; (b) G1 and
G2 are the DFA models of the AGVs and G is the model of the overall system.

Example 7.7 Consider the material handling system whose layout is shown in Fig. 7.9 (a). The
system is composed by two AGV (automated guided vehicles) that move on two different tracks.
The first AGV G1 serves four stations (A, B, C and D). The second AGV G2 serves two stations
(D and E). The DFA models of the two AGVs are shown in Fig. 7.9 (b): we assume that the initial
and final location of AGV G1 is in station A, while the initial and final location of AGV G2 is in
station E. The alphabet of G1 is E1 = {a, b, c, d}, while the alphabet of G2 is E2 = {e, f}. We
assume that events b and c are uncontrollable.

We construct by concurrent composition the model of the plant G = G1 ∥ G2 also shown in
Fig. 7.9 (b) on alphabet E = E1 ∪ E2 = {a, b, c, d, e, f}. Here a state, say, AE denotes that the
first AGV is in station A and the second one in station E.

The system must be controlled to enforce the following specification: the two AGVs should not
be at the same time in station D to avoid a collision. Thus we have a set of forbidden states
F = {DD} containing a single state DD colored in dark red in Fig. 7.9 (b).

Due to the presence of uncontrollable events b and c the set of weakly forbidden states is Fweak =
{BD,CD}. which are colored in light red.

Removing the forbidden and weakly forbidden states we obtain the supervisor S shown in Fig. 7.10.
This supervisor allows AGV G2 to enter station D (event e is enabled) only when AGV G1 is in
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Figure 7.10: The supervisor S which is also the closed-loop system S/G in Example 7.7.

station A. ⋄

We conclude with two final remarks concerning the supervisor designed by Algorithm 7.1.

First, we observe that such a supervisor is:

• admissible, i.e., it disables only uncontrollable events;

• correct, i.e., prevents the plant to reach a forbidden state;

• maximally permissive, i.e., it disables only event occurrences that lead to a forbidden or
weakly forbidden state.

As an example, the supervisor in Fig. 7.10 disables: controllable event e from states BE, CE and
DE, and controllable event a from state AD.

Second, we remark that the closed-loop system S/G coincides with the supervisor S. In fact
since S refines G, then L(S) ⊆ L(G) and Lm(S) ⊆ Lm(G). Thus the closed loop-system
S/G = G ∥ S = G∩S (see Subsection 7.2) has closed language L(S/G) = L(G)∩L(S) = L(S)
and marked language Lm(S/G) = Lm(G) ∩ Lm(S) = Lm(S).

7.5 Supervisory design for language specifications

Let us first present the control problem we will address in this section.

Definition 7.11 (Control problem for language specifications) Consider a plant G with closed
language L(G) ⊆ E∗ and a language specification consisting in a prefix-closed set of legal words
K ⊆ E∗. Find a maximally permissive4 supervisor S such that L(S/G) ⊆ K. ▲

In other words we want to find a supervisor S such that the closed-loop systems only generates
allowed words in LK = L(G) ∩K.

4The notion of maximally permissive supervisor for a language specification will be clarified in the following.
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Figure 7.11: The set of weakly forbidden words FK
weak ⊆ LK for a language specification K

contains all allowed words that can be extended to a forbidden word by a sequence wuc that only
contains uncontrollable events.

7.5.1 Weakly forbidden words and controllability

To prevent forbidden words from being reached it is necessary, once an allowed word w′ ∈ LK

has been generated, to disable the firing all of events e that produce a forbidden word w = w′e ∈
FK . However, it may happen that once an allowed word w′ has been generated there exists an
uncontrollable sequence wuc ∈ E∗

uc (i.e., a sequence composed by one or more uncontrollable
transitions) such that w = w′wuc ∈ FK is a forbidden word and such a sequence cannot be
disabled by a supervisor. To characterize this situation, let us introduce the following definition.

Definition 7.12 (Weakly forbidden words) Given a plant G = (X,E, δ, x0, Xm) with set of
uncontrollable events Euc and a language specification K, we define the set of weakly forbidden
words

FK
weak = {w′ ∈ LK | (∃wuc ∈ E∗

uc) w = w′wuc ∈ FK}
containing all allowed words that can be continued in a forbidden word by a sequence that only
contains uncontrollable events. ▲

This is shown in Fig. 7.11, where set FK
weak is shown in light red.

Thus in the presence of uncontrollable events the supervisor must ensure that the plant does not
generate a forbidden or a weakly forbidden word. The supervisor is maximally permissive if it
only prevents generating forbidden or weakly forbidden words.

It is possible to characterize the existence of weakly forbidden words in terms of a fundamental
property of the specification language.

Definition 7.13 (Controllability of a specification) A prefix-closed specification language K is
called controllable with respect to a plant G and a set of uncontrollable events Euc if the following
relation5 hold

KEuc ∩ L(G) ⊆ K. (7.1)

▲
5In eq. (7.1) KEuc denotes the set of words obtained by the concatenation of a word in K with an uncontrollable

event euc ∈ Euc. Note that K and KEuc may have a non-null intersection.



7.5. Supervisory design for language specifications 83
 

 

 

 
 

 

  

x0 

x1 

x2 
a 

b 
G1 

c: 

d: 

d: 

a 

b 

c,d 

H1 

y1 y0 

a 

b 

c,d 

y1 y0 

a b 

yF 

Ĥ 1 

(x0,y0) 

a b 

c: 

d: 

(x2,y0) 

(x1,y1) 
A1=G1||Ĥ1 

Figure 7.12: Automata in Example 7.8: plant G1, specification automaton H1, extended specifi-
cation automaton Ĥ1 and composed automaton A1 = G1 ∥ Ĥ1.

This condition ensures that if plant G can generate a word weuc ∈ L(G) where w ∈ K is a legal
word and euc ∈ Euc is an uncontrollable event, then weuc is also legal.

We can finally state the following result.

Proposition 7.1 Given a plant G with set of uncontrollable events Euc and a language specifica-
tion K, the set of weakly forbidden words is empty if and only if K is controllable with respect to
G and Euc.

Proof. The controllability condition ensures that no word w ∈ LK can be extended with an
uncontrollable event euc to a word weuc ∈ FK . This is a necessary and sufficient condition to
ensure that no weakly forbidden word exists. □

7.5.2 Checking controllability

In this section we discuss how is it possible to check if a specification language is controllable.
This is a key preliminary step for solving a control problem for language specifications.

First observe that we use a DFA to represent a specification K.

Definition 7.14 (Specification automaton) Given a prefix-closed language specification K ⊆
E∗, the corresponding specification automaton is the DFA H = (Y,E, δH , y0, Ym) which gener-
ates and accepts language K, i.e., L(H) = Lm(H) = K. ▲

Note that being K prefix-closed it holds that Ym = Y , i.e., all states of H are final.

Example 7.8 Consider the plant G1 in Fig. 7.12 on alphabet E = {a, b, c, d}. The specification
language K consists of all words in E∗ such that: i) only event b can immediately follow an event
a, and ii) each event b is immediately preceded by an event a. The corresponding specification
automaton H1 is also shown in figure. ⋄
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From the specification automaton we can derive an extended structure.

Definition 7.15 (Extended specification automaton) Given a plant G with set of uncontrollable
events Euc and a language specification K represented by the DFA H = (Y,E, δH , y0, Ym) the
extended specification automaton is the DFA Ĥ = (Y ∪ {yF }, E, δ̂H , y0, Ym) where for all

δ̂H(y, e) =


δH(y, e) if δH(y, e) is defined;

yF if y ∈ Y , e ∈ Euc and δH(y, e) is not defined;

undefined otherwise.

This automaton generates language L(Ĥ) = K ∪KEuc and accepts language Lm(H) = K. ▲

In other words, the extended automaton Ĥ is obtained from H adding a new state yF and, for all
states y ∈ Y , if an uncontrollable event e ∈ Euc is not enabled in H , then a new e-transition is
created from y to yF .

Remark 7.1 While the specification automaton H only generates legal words in K, the extended
specification automaton may also generate words that are not legal, namely all those in KEuc \K.
Note that such words are generated with a run that reaches state yF , i.e., w ∈ KEuc \ K if and
only if δ̂∗H(y0, w) = yF . ■

Example 7.9 Consider again plant G1 in Fig. 7.12 on alphabet E = {a, b, c, d}, previously dis-
cussed in Example 7.8. Assume the set uncontrollable events is Euc = {a, b}. The extended
specification automaton Ĥ1 obtained from the specification automaton H1 is shown in the same
figure.

Note that words abc ∈ K \KEuc and aba ∈ K ∩KEuc are legal words and are generated by runs
that do not reach state yF : in fact, δ̂∗H(y0, abc) = y0 and δ̂∗H(y0, aba) = y1. Word abb ∈ KEuc\K
is not legal and is generated by a ran δ̂∗H(y0, abb) = yF that reaches state yF . ⋄

The last step to check if specification K is controllable consists in constructing a composed au-
tomaton.

Definition 7.16 (Composed automaton) Given a plant G = (X,E, δ, x0, Xm) and an extended
specification automaton Ĥ = (Y,E, δH , y0, Ym) the composed automaton is the DFA A = G ∥ Ĥ
obtained by their concurrent composition.

This automaton generates language L(A) = L(G) ∩ L(Ĥ) = L(G) ∩ (K ∪KEuc) and accepts
language Lm(A) = Lm(G) ∩ Lm(Ĥ) = Lm(G) ∩ Lm(H). ▲

Note that each state of the composed automaton A is a pair (x, y) ⊆ X × (Y ∪ {yF }) whose first
element x is a state of plant G and whose second element y is a state of Ĥ . A subset of states of
A is particularly relevant to study the controllability of a specification.

Definition 7.17 A state (x, y) of the composed automaton A = G ∥ Ĥ is called forbidden if its
second component is y = yF . The set of forbidden states of A is denoted FA. ▲
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We can finally state the following result.

Proposition 7.2 Given a plant G with set of uncontrollable events Euc and a language specifi-
cation K, let Ĥ be the corresponding extended specification automaton and A = G ∥ Ĥ the
resulting composed automaton.

Specification K is controllable if and only if the composed automaton A contains no forbidden
state, i.e., FA = ∅.

Proof. By construction, the language generated by the composed automaton is

L(A) = L(G ∥ Ĥ) = L(G) ∩ L(Ĥ) = L(G) ∩ (K ∪KEuc).

By Definition 7.13, K is not controllable if and only if there exists a word in KEuc ∩ L(G) that
is not legal, i.e., such a word belongs to (KEuc \K) ∩ L(G). According to Remark 7.1 words in
(KEuc \K) are those generated by a run of Ĥ that reaches state yF , i.e, by a run of A that reaches
a forbidden state. □

Example 7.10 Consider again plant G1 in Fig. 7.12 on alphabet E = {a, b, c, d} discussed in
Example 7.9. Composing G1 with the extended specification automaton Ĥ1 we obtain A1 = G1 ∥
Ĥ1, also shown in the same figure. Obviously FA1 = ∅ because there is no state in A1 whose
second component is yF . Hence the specification K represented by H1 is controllable. ⋄

We conclude with an example showing a specification which is not controllable.

Example 7.11 Consider the plant G2 in Fig. 7.13 on alphabet E = {a, b, c, d}. This automaton
has the same structure of plant G1 in Fig. 7.12 but the set of uncontrollable events is now Euc =
{b, c}.

The specification language K consists of all words in E∗ such that: i) event d must occur at least
once between two events c, and ii) at least one event d must precede (not necessarily immediately)
the first occurrence of event c. The corresponding specification automaton H2 and the extended
specification automaton Ĥ2 are also shown in figure.

The composed automaton A2 = G2 ∥ Ĥ2 has set of forbidden states FA2 = {(x2, yF )} hence
specification K is not controllable. The forbidden state is shown filled in red.

Consider word w = abc which is generated by a run that reaches the forbidden state, hence it is
not legal. This word belongs to KEuc because is can be written as w = (ab) · c = w′euc where
w′ = ab is a legal word and euc = c is an uncontrollable events. Hence when legal word w′ = ab
is generated, a supervisor cannot prevent the system from generating the forbidden word abc. ⋄

7.5.3 Supervisory design for language specification

It may seem natural to use the specification automaton as a supervisor: in fact in such a case the
closed-loop system G ∥ H generates the language L(G) ∩ L(H) = L(G) ∩K = LK containing
only allowed words. However, when the specification K is not controllable and automaton H is
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Figure 7.13: Automata in Example 7.11: plant G2, specification automaton H2, extended specifi-
cation automaton Ĥ2, composed automaton A2 = G2 ∥ Ĥ2 and supervisor S2.

used as a supervisor, the plant may generate a weakly forbidden word in FK
weak ⊆ LK , while such

a word should also be forbidden.

Thus, when solving a language specification control problem we need to consider two cases.

Case 1 - specification K is controllable

When K is controllable the set of weakly forbidden words FK
weak is empty. In this case:

• the desired supervisor S coincides with the specification automaton H;

• the closed-loop system S/G coincides with A = G ∥ Ĥ = G ∥ H;

• the language of the closed-loop system is L(S/G) = L(G) ∩K.

Example 7.12 Consider the control problem discussed in Example 7.10 whose relevant automata
are shown in Fig. 7.12. Since the specification K is controllable the desired supervisor is S = H1.
One can readily verify that in this case A1 = G1 ∥ Ĥ1 = G1 ∥ H1 and the closed-loop system
S/G = A1 generates all words in L(G) that are legal. ⋄
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Case 2 - specification K is not controllable

In such a case, we will show that the supervisory design for language specification K can be
reduced to a state specification problem for the composed automaton A where the set of forbidden
states is FA.

First we shown that when K is not controllable, and the set of weakly forbidden words FK
weak is

not empty, these words can be characterized in terms of the composed automaton A = G ∥ Ĥ .

Definition 7.18 A state (x, y) of the composed automaton A = G ∥ Ĥ is called weakly forbidden
if it is coreachable to a forbidden state in FA by a path consisting of one or more uncontrollable
events. We denote FA

weak the set of weakly forbidden states of the composed automaton A. ▲

We can state the following result whose proof follows from the same arguments used in the proof
of Proposition 7.2

Proposition 7.3 Given a plant G and a language specification K, let Ĥ be the corresponding
extended specification automaton A = G ∥ Ĥ be the composed automaton.

• A word w ∈ L(A) belongs to the set of forbidden words FK if and only if the run that
generates it reaches a forbidden state in FA.

• A word w ∈ L(A) belongs to the set of weakly forbidden words FK
weak if and only the run

that generates it reaches a weakly forbidden state in FA
weak. ■

In this case the supervisor S that solves the control problem for plant G and language specification
K coincides with the supervisor that prevents plant A to reach a state in FA∪FA

weak. It holds that:

• the desired supervisor S coincides with the structure obtained trimming A to remove all
forbidden and weakly forbidden states in FA ∪ FA

weak;

• the closed-loop system S/G coincides with S;

• the language of the closed-loop system is L(S/G) = LK \FK
weak ⊊ L(G)∩K, i.e. contains

all allowed words that are not weakly forbidden.

Note that in this case the supervisor S is obtained by trimming the structure of the composed
automaton A and coincides with the closed-loop system: it is called monolithic supervisor.

Example 7.13 Consider again the control problem previously discussed in Example 7.11 whose
relevant automata are shown in Fig. 7.13.

The composed automaton A2 = G2 ∥ Ĥ2 has set of forbidden states FA2 = {(x2, yF )}: this
(unique) forbidden state is shown filled in red in the figure. Since the set of uncontrollable events
is {b, c} the set of weakly forbidden states of A is FA2

weak = {(x1, y0), (x2, y0)}: these states are
shown filled in pink.

The final supervisor S is obtained trimming A2 to remove forbidden and weakly forbidden states.
This is a monolithic supervisor that also describes the behavior of the closed-loop system. ⋄
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General design procedure

The following procedure summarizes the steps required to solve a control problem for language
specifications.

Algorithm 7.2 Supervisory design for language specifications
Input: A plant G; a language specification K ⊆ E∗ described by the specification automaton H .
Output: A maximally permissive supervisor S and the closed-loop system S/G.

1. Construct the extended specification automaton Ĥ .

2. Construct the composed automaton A = G ∥ Ĥ .

3. Compute the set FA of forbidden states of A.

4. If FA = ∅ then RETURN:

• the supervisor is S = H , because K is controllable;

• the closed loop system is S/G = A.

5. Compute the set FA
weak of weakly forbidden states of A.

6. If the initial state of A belongs to FA
weak then RETURN: there is no solution.

7. Trim A removing all states in FA ∪ FA
weak and their input output arcs.

8. The remaining structure is both the supervisor S and the closed-loop system S/G. ■

Note that if the final automaton S contains some unreachable states, it can be further trimmed to
remove them.

As a final remark, we observe that a supervisor constructed by Algorithm 7.2 is:

• admissible, i.e., it disables only uncontrollable events;

• correct, i.e., the closed-loop system generates only allowed words;

• maximally permissive, i.e., it only prevents the plant from generating weakly forbidden
words.
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Chapter 8

Examples of hybrid systems

8.1 Features of hybrid systems

A hybrid system is a dynamical system whose behavior combines the dynamics of both time-driven
systems and discrete-event systems.

Hybrid systems typically generate mixed signals that consist of combinations of continuous and
discrete-valued signals. Some of these signals take values from a continuous set (e.g. the set of
real numbers) and others take values from a discrete, typically finite set (e.g. the set of symbols
{a, b, c}). Furthermore, these continuous or discrete-valued signals depend on independent vari-
ables such as time, which may also be continuous or discrete-valued. Another distinction that can
be made is that some of the signals can be time-driven, while others can be event-driven in an
asynchronous manner.

The causes of the complex behavior typical of hybrid systems are multifarious and among the
paradigms commonly used in the literature to describe them we mention three.

• Logically controlled systems. Often a physical system with a time-driven evolution is con-
trolled in a feedback loop by means of a controller that implements data-sampling, discrete
computations and event based logic. This is the case of the thermostat mentioned in the
following.

Classes of systems that can be described by this paradigm are digital control systems, em-
bedded systems or, when the feedback loop is closed through a communication network,
cyber-physical systems.

• State-dependent mode of operation. A time-driven system can have different modes of
evolution depending on its current state. In this case the dynamic behavior of interest can
be adequately described by a finite number of dynamical models, which are typically sets of
differential or difference equations, together with a set of rules for switching among these
models.

As an example, consider a circuit containing a diode. When the diode is forward-biased
current can flow though it: an ideal diode in this operating mode is simply a short-circuit.
While the diode is reverse-biased current cannot flow: an ideal diode in this operating mode
is simply an open circuit.
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Classes of systems that can be described by this paradigm are piecewise affine systems and
linear complementarity system.

• Variable structure systems. Some systems may change their structure assuming different
configurations depending on come external action, each characterized by a different be-
havior. As a example, consider a multicell voltage converter composed by a cascade of
elementary commutation cells: controlling some switches it is possible to insert or remove
cells so as to produce a desired output voltage signal.

Classes of systems that can be described by this paradigm are switched systems.

Modeling, analysis and control of hybrid systems are complex problems: for this reasons it is com-
mon to separately study their event-driven dynamics from the time-driven dynamics, the former
via automata or Petri net models (also via PLC, logic expressions, etc.) and the latter via differen-
tial or difference equations. This approach is appropriate where the time-driven and event-driven
dynamics are not tightly coupled or the demands on the system performance are not difficult to
meet, and in those cases considering simpler separate models for the distinct phenomena may be
adequate. However, to fully understand the system’s behavior and meet high performance specifi-
cations, one needs to model both type dynamics and study their interactions.

In the rest of this chapter several examples of hybrid systems, taken from different domains are
presented.

8.2 Thermostat

This first example, which was already presented in Chapter 1 Example 1.5, is repeated here for
convenience. A thermostat is programmed to keep the temperature x(t) of a room between TON =
20 ◦C and TOFF = 22 ◦C, switching on and off a heat pump. The room exchanges heat with the
external environment at temperature Te < TON .

When the heat pump is off, the heat flow is −k[x(t) − Te] [J/s]. Here k is a suitable coefficient
and the negative sign in front of it denotes that if x > Te then there is a heat loss from the room to
the external environment. Since the room temperature ẋ(t) is equal to the ratio between the total
heat flow and the room thermic capacity, that for sake of simplicity we assume to be unitary, we
can say that in this case the temperature decreases according to

ẋ(t) = −k[x(t)− Te].

When the heat pump is on, it generates a heat flow equal to q(t) [J/s] that we assume is greater
than the heat loss. Thus the temperature increases according to

ẋ(t) = q − k[x(t)− Te].

The thermostat activates the pump (state ON ) when the temperature is less than or equal to TON

and stops it (state OFF ) when the temperature is greater than or equal to TOFF . We assume
that when the pump is on the heat flow it produces is greater than the heat flow loss towards the
external environment.
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Figure 8.1: Model of the thermostat.
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v(t) ḣ(t) = v(t)

v̇(t) = g

h ≤ 0 andv < 0 ?

v := −αv−

FIG 9.2: A bouncing ball (a) and its model (b).

1

Figure 8.2: (a) Sketch of a bouncing ball; (b) its dynamical model.

The behavior of this system can be described by the graphical model1 shown in Fig. 1.4. If we
ignore the dynamics within the boxes, we can recognize a simple discrete-event model that on the
occurrence of some events (corresponding to the temperature crossing some threshold) describes
the operation of the thermostat. If we focus on the dynamics within each box, we recognize a
continuous-time time-driven system associated with the temperature dynamics.

8.3 Bouncing ball

Let us consider a ball positioned over a horizontal plane with initial null velocity as in Fig. 8.2 (a).
Let h(t) denote the distance of the ball from the plane and v(t) its velocity. Due to the gravitational
acceleration g the ball drops down to the plane and bounces back, remaining always on a vertical
line.

The dynamical behavior of this system when the ball is in the air ḣ(t) = v(t)

v̇(t) = −g

The impact is partially elastic: if τ is an instant in which the impact occurs, the velocity changes of
direction, instantaneously passing from value v− = v(τ−) < 0 to value v = v(τ) = −αv(τ−) >
0, with α ∈ (0, 1).

The behavior of this system can be described by the graphical model shown in Fig. 8.2 (b). Note
1In the next chapter we will clarify that adding to this graphical model some additional structure one obtains a

formal model called Hybrid Automaton.
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Figure 8.3: A servomechanism with gear-box.

that in this case the systems has only one mode of evolution, but the occurrence of the discrete
event (the bounce) determines a discontinuity in the continuous state. In effect, the bounce is a
complex elastic phenomenon with a very fast dynamics that here we are approximating with an
impulsive action.

In the edge that describes the discrete event, one should take care to distinguish the enabling
condition ”h ≤ 0 and v < 0” which specifies when the event can occur, from the updating
condition ”v := −αv−” which specifies how the event occurrence modifies the continuous state.

8.4 Servomechanism with gear-box

Consider a servomechanism, such as the transmission system of a car, where by controlling a
throttle u ∈ [0, 1] and selecting a gear g ∈ {1, 2, 3, 4} one can regulate the angular position θ and
the angular velocity ω of a mechanical load, as shown in Fig. 8.3 (see also [15]).

The dynamical behavior of this system is described by θ̇(t) = ω(t)

ω̇(t) = ηg(ω) u(t)

where ηg(ω) is a nonlinear function that represents the efficiency of gear g ∈ {1, 2, 3, 4}. The
qualitative shape of the efficiency functions are shown in Fig. 8.4 (top).

Designing an automatic transmission system requires determining angular velocity thresholds
ωi,i+1 for i = 1, 2, 3 and ωi,i−1 for i = 2, 3, 4 such that:

• if ω ≥ ωi,i+1 the gear-box switches from gear i to gear i+ 1;

• if ω ≤ ωi,i−1 the gear-box switches from gear i to gear i− 1.

Suitable values of the thresholds are shown in Fig. 8.4 (bottom). The behavior of the automatic
transmission system is shown in Fig. 8.5.

In some cases (e.g., the automobile Smart manufactured by Daimler) the transmission systems is
designed in such a way that to switch from gear i to gear i+1 the driver must provide a command
up, while the switch from gear i to gear i−1 can be either automatic or controlled by the driver by
a command down. The behavior of this semiautomatic transmission system is shown in Fig. 8.6.
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Figure 8.4: Efficiencies η and velocity thresholds of a transmission system.
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Figure 8.5: Model of an automatic transmission system.
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Figure 8.6: Model of a semiautomatic transmission system.
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Example #7: Server system with congestion control 
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which controller to use

Figure 8.8: Model and evolution of the TCP server with AIMD congestion control.

8.5 TCP server with congestion control

Consider a TCP server where packets arriving with an incoming rate w(t) (congestion window)
are stored in a buffer, as shown in Fig. 8.7. The buffer has a capacity qmax and the total number
of packets it contains at time t is denoted by q(t). The packets in the buffer are transmitted with a
rate of service B(t), according to the available bandwidth.

The additive-increase/multiplicative-decrease (AIMD) algorithm is a congestion avoidance feed-
back control algorithm that combines linear growth of the congestion window with a multiplicative
reduction when a congestion takes place. This means that while the buffer is not full (q ≤ qmax)
the incoming rate w will increase linearly, and the evolution of this system is described by q̇(t) = w(t)−B(t)

ẇ(t) = 1

As soon as the buffer is full and packets are dropped (collision) the congestion window is reduced
to γw with γ ∈ (0, 1). This can be described by the graphical model in Fig. 8.8, where a typical
evolution of this system is also shown.

8.6 Two-gene regulatory network

Gene regulatory networks are interconnected sets of genes, proteins, and small molecules that
control the expression of particular genes in a cell. Here gene expression denotes the process
by which information from a gene is used in the synthesis of a functional gene product, such as
a protein. The expression of a gene starts with the transcription into messenger RNA (mRNA)
which is next translated into the corresponding protein. The level of expression is controlled by
some protein(s) produced by the same or other gene(s).
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Figure 8.9: A two-gene regulatory network.

An example of a two-gene network is shown in Fig. 8.9 (a). It is composed by two genes A and
B: gene A produces mRNA A and protein A; gene B produces mRNA B and protein B. The two
genes are mutually dependent: the presence of protein B inhibits the expression of gene A, while
the presence of protein A activates the expression of gene B.

This dynamical systems can be described by the following system of nonlinear equations

ẋ1(t) = a1 σn(x4(t))− b1 x1(t),

ẋ2(t) = a2 x1(t)− b2 x2(t),

ẋ3(t) = a3 σp(x2(t))− b3 x3(t),

ẋ4(t) = a4 x3(t)− b4 x4(t).

where x1, x3 ∈ [0, 1] and x2, x4 ∈ [0, 1] are the concentrations of the mRNAs and the proteins
produced by the genes A and B, respectively, ai, bi ∈ R≥0 (i = 1, 2, 3, 4) are the production and
degradation rate constants, and σn and σp are nonlinear functions defined as

σn(x4) :=
θkn

θkn + xk4
, σp(x2) :=

xk2
θkp + xk2

for k ∈ N>0 and θn, θp ∈ (0, 1).

Function σn rules the inhibition of gene A by Protein B, while function σp rules the activation of
gene B by Protein A. These functions (assuming k ≫ 1) are qualitatively plotted in Fig. 8.9 (b):
note that the functions fall/rise more steeply as k increases.

Considering the commonly used piecewise constant approximation

σn(x4) = 0.5sign(x4 − θn) + 0.5 and σp(x2) = −0.5sign(x2 − θp) + 0.5.

the nonlinear model of the two-gene regulatory network can be approximated by a hybrid model
with four different dynamics. Each dynamics is active in one of the following regions of the state
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Figure 8.10: State space regions in the plane (x2, x4) for the piecewise affine model of the two-
gene regulatory network.

space:

S1 = {x ∈ [0, 1]4 | x2 < θp, x4 < θn}
S2 = {x ∈ [0, 1]4 | x2 > θp, x4 < θn}
S3 = {x ∈ [0, 1]4 | x2 < θp, x4 > θn}
S4 = {x ∈ [0, 1]4 | x2 > θp, x4 > θn}

as shown in Fig. 8.10.

S1 :



ẋ1 = a1 − b1 x1,

ẋ2 = a2 x1 − b2 x2,

ẋ3 = − b3 x3,

ẋ4 = a4 x3 − b4 x4.

S2 :



ẋ1 = a1 − b1 x1,

ẋ2 = a2 x1 − b2 x2,

ẋ3 = a3 − b3 x3,

ẋ4 = a4 x3 − b4 x4.

S3 :



ẋ1 = − b1 x1,

ẋ2 = a2 x1 − b2 x2,

ẋ3 = − b3 x3,

ẋ4 = a4 x3 − b4 x4.

S4 :



ẋ1 = − b1 x1,

ẋ2 = a2 x1 − b2 x2,

ẋ3 = a3 − b3 x3,

ẋ4 = a4 x3 − b4 x4.

Note that in each region the dynamical evolution of the stet x ∈ Rn is ruled by an affine function
of the form

ẋ(t) = A x(t) + b

where A ∈ Rn×n and b ∈ Rn. Such a model is called a piecewise affine system.
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Figure 8.11: Hysteresis cycle.

h(x)

x

1

−1

a− a

FIG 9.10: Hysteresis.

x ≥ a ?

x ≤ −a ?

ẋ = 1 + u

{x ≤ a}
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Figure 8.12: Control system with hysteresis.

8.7 Hysteresis

Hysteresis is a common phenomenon in mechanical systems; it is characterized by a delay between
the application of a cause and it observed effect.

As an example, consider a control system with a hysteresis element in the feedback loop

ẋ(h) = h(x) + u(t)

where h : R → R is the multi-valued function shown in Fig. 8.11.

For large values of x, namely x > a, it holds that h(x) = −1. Dually, for small values of x,
namely x < −a, it holds that h(x) = 1. However for x ∈ [−a, a], as x changes the value
of function h(x) depends on its previous value. As an example let us consider a cycle where x
decreases from value 2a to −2a and then goes back to the initial value. Function h(x), whose
value is initially −1, while x is decreasing will keep this value until x crosses the threshold −a:
then h(x) changes to 1. While x is increasing, function h(x) keeps the value 1 until x crosses the
threshold a and then h(x) changes to 1.

This control system with hysteresis can be described by the graphical model in Fig. 8.12.
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Figure 8.13: Chua’s circuit.

8.8 Chua’s circuit

Chua’s circuit (Fig. 8.13) is a simple electronic circuit exhibiting a wide variety of bifurcation and
chaotic phenomena. The peculiar component of this circuit is an element with nonlinear negative
resistance called Chua’s diode.

Let (x1, x2, x3) be the state of the Chua’s circuit, whose components are:

• x1(t): the voltage across capacitor C1 (and across Chua’s diode);

• x2(t): the voltage across capacitor C2 (and across the inductor);

• x3(t): the current through the inductor L.

After a suitable rescaling of the state variables, the dynamics of Chua’s circuit can be accurately
modeled by means of a system of three dimensionless differential equations


ẋ1(t) = α(x2(t)− f(x1))

ẋ2(t) = x1(t)− x2(t) + x3(t)

ẋ3(t) = −βx2(t)

The nonlinear term f(x1) is the piecewise linear characteristics of Chua’s diode and is given as

f(x1) = m1x1 +
1

2
(m0 −m1)(|x1 + 1| − |x1 − 1|)

where m0 and m1 denote the slope of the inner and outer segments of the piecewise affine function
in Fig. 8.13, respectively.
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Figure 8.14: Piecewise affine model of Chua’s circuit.

The Chua’s circuit can be described by a piecewise affine2 model composed of three subsystems:

ẋ(t) = A1x(t) + a1 with A1 =


−m1α α 0

1 −1 1

0 −β 0

 , a1 =


(m1 −m0)α

0

0

 ,

ẋ(t) = A2x(t) + a2 with A2 =


−m0α α 0

1 −1 1

0 −β 0

 , a2 =


0

0

0

 ,

ẋ(t) = A3x(t) + a3 with A3 =


−m1α α 0

1 −1 1

0 −β 0

 , a3 =


(m0 −m1)α

0

0

 .

The switchings among them are illustrated in Fig. 8.14.

8.9 CPU process control

The increasing demand for personal computers has lead to the development of CPUs with high-
speed and energy-saving computing capability. However, these requirements are usually conflict-
ing. The CPU needs to operate at high clock frequency (voltage) to realize high-speed computing,
while a high clock frequency spends much energy and raises the CPU temperature, which often
leads to hardware malfunctions. If the CPU demand is small, the CPU should be operated at

2Note that a function f : R → R is called linear if it takes the form f(x) = ax+ b: this is why the characteristic
of Chua’s diode is called piecewise linear.

On the contrary an autonomous dynamical system with state x(t) is called linear when its model take the form
ẋ(t) = Ax(t), while it is called affine when its model takes the form ẋ(t) = Ax(t) + b. This is why the dynamical
model of Chua’s circuit is called piecewise affine.
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Figure 8.15: CPU control system.

low clock frequency (voltage) to cool it down and decrease the power consumption, while if the
CPU demand is large, it should be operated at high clock frequency (voltage) to achieve high
speed computing. Additionally, the CPU is cooled by a cooling fan whose voltage input should be
suitably regulated.

Consider the model in Fig. 8.15, whose state is described in terms of the CPU temperature, the
CPU tasks, and the angular velocity of the cooling fan. Let us define the state of the system when
a sufficiently long time has passed after booting the system as the equilibrium state of this model.
Denote x1, x2, and x3 the deviations of the CPU temperature, the amount of CPU tasks in the
buffer, and the angular velocity of the cooling fan from the equilibrium state, respectively, and
denote u1 and u2 the deviations of the clock frequency and the voltage input of a cooling fan from
the equilibrium input, respectively. The dynamical evolution of this model around the equilibrium
state can be described by 

ẋ1(t) = −a1x1(t)− a2x3(t) + b1u1(t),

ẋ2(t) = −b2u1(t),

ẋ3(t) = −a3x3(t) + b3u2(t),

where the parameters a1, a2, a3, b1, b2, and b3 are positive real constants.

The first equation shows that the time variation of the CPU temperature proportionally increases
as the clock frequency increases and the angular velocity of a cooling fan decreases. The second
equation shows that the time variation of the amount of CPU tasks in the buffer proportionally
decreases as the clock frequency increases. The third equation denotes the dynamics of the DC
motor of the fan.

The following is a possible simplified approach to design a suitable controller for this system.
The main idea is that of choosing control inputs u1 and u2 according to the values of x1 and x2,
considering the state space partition shown in Fig. 8.16. In region S1, the CPU has a heavy load
to process but its CPU temperature is not so high: one can use the clock frequency u1 as a control
input and set u2 = 0. Region S2 represents the standard operating condition, characterized by a
nominal load and acceptable temperatures: one can use the voltage input of fan u2 as a control
variable and set u1 = 0. Finally, region S3 denotes a emergency condition, characterized by heavy
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Figure 8.16: State space regions in the plane (x1, x2) for the CPU control system.

load and high CPU temperature: both u1 and u2 need to be used as control inputs. In each region,
it may be possible to selected constant values for u1 and u2 so that the controlled system is stable.

8.10 One-legged running robot

Fig. 8.17 shows the model of a planar one-legged running robot. The robot is attached not only
with a leg spring but also a hip spring. It is assumed to satisfy the following assumptions.

(a) The center of mass (CoM) of the body is just on the hip joint.

(b) Mass of the foot is negligible.

(c) The foot does not bounce back, nor slip the ground (inelastic impulsive impact).

(d) The springs are mass-less and non-dissipating.

The physical parameters are shown in Table 8.1.

One complete locomotion cycle is illustrated in Fig. 8.18. It consists of the flight phase where the
toe does not touch the ground and the robot traverses a ballistic trajectory, and the stance phase,
where the toe is on the ground and the leg spring is compressed. The beginning of the flight phase
and stance phase are termed take-off and touchdown, respectively. Since the robot is a variable
structure system, we derive different equations of motion for flight and stance phases.

At stance phase, the kinetic energy is given by

K =
1

2
mṙ2 +

1

2
Jbϕ̇

2 +
1

2
mr2θ̇2 +

1

2
Jlθ̇

2

and the potential energy is given by

P = mgr cos(θ) +
1

2
kl(r − r0)

2 +
1

2
kh(θ − ϕ)2.

Thus, the Lagrangian of the system can be obtained from

L = K − P
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Figure 8.17: Passive one-legged hopper.

Table 8.1: Physical parameters of the robot.

Meaning Unit Value

g gravity acceleration m/s2 9.8

m total mass kg 12

r0 natural leg length m 0.5

Jb body inertia kgm2 0.5

Jl equivalent leg inertia kgm2 0.11

kl leg spring stiffness N/m 3000

kh hip spring stiffness Nm/rad 10
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Figure 8.18: Locomotion phases during one cycle.

and according to the Euler-Lagrange equation

d

dt

∂L

∂ẏ
− ∂L

∂y
= f

with external forces f , one obtains
mr̈ +mg cos(θ) + kl(r − r0)−mrθ̇2

d
dt(mr2θ̇) + Jlθ̈ −mgr sin(θ) + kh(θ − ϕ)

Jbϕ̈− kh(θ − ϕ)

 =


u1

0

u2


where u1 is the control force of the leg and u2 is the control torque of the hip joint, which are
applied during stance phase.

At flight phase, the kinetic energy is given by

K =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
Jbϕ̇

2 +
1

2
Jlθ̇

2

and the potential energy is given by

P = mgy +
1

2
kh(θ − ϕ)2.

Thus, the Lagrangian of the system can be obtained from

L = K − P

and according to the Euler-Lagrange equation

d

dt

∂L

∂ẏ
− ∂L

∂y
= f
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with external forces f , one obtains
mẍ

mÿ +mg

Jlθ̈ + kh(θ − ϕ)

Jbϕ̈− kh(θ − ϕ)

 =


0

0

u3


where u3 represents the control torque of the hip joint, which is applied during flight phase.

By assumption (c), the velocities of the generalized coordinates change instantaneously at the
moment of touchdown, according to

ẋtd = 0

ẏtd = ẏtd− − tan(θtd)ẋtd−

θ̇td = θ̇td− − mr0ẋtd−
Jl cos(θtd)

ϕ̇td = ϕ̇td−

ṙtd =
ẏtd−−(1+mr20) tan(θtd)ẋtd−+r0 sin(θtd)θ̇td−

cos(θtd)



Chapter 9

Hybrid automata

A general model used to describe hybrid systems is the so called Hybrid Automaton (HA). It
is an extension of a finite state automaton whose discrete states (called locations) represent the
discrete state space. To each location is associated a time-driven evolution typically described by
a differential equation. The edges connecting the locations represent the discrete events.

9.1 Autonomous hybrid automaton

The first class of hybrid automata we consider are called autonomous. Their evolution does not
depend on external inputs.

Definition 9.1 An autonomous hybrid automaton is a structure

H = (L,X,Act, Inv,E)

where:

• L = {ℓ1, ℓ2, . . . , ℓs} is the discrete state space, i.e., a finite set of cardinality s whose
elements are called locations;

• X ⊆ Rn is the n-dimensional continuous state space;

• Act = {f1, f2, . . . , fs} is the set of activities: with each location ℓi ∈ L is associated a
vector field (or activity), i.e., a function fi : X → Rn;

• Inv = {I1, I2, . . . , Is} is the set of invariants: with each location ℓi ∈ L is associated an
invariant Ii ⊆ X , i.e., a subset of the continuous space;

• E ⊆ L × G × J × L is the set of edges of the automaton. Each edge ek represents an
admissible discrete event and is represented as 4-tuple

ek = (ℓ, gk, jk, ℓ
′)

where:

107
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– ℓ ∈ L denotes the tail of the edge, i.e., the location from which the event may occur,

– gk ⊆ X denotes the guard of the edge,

– jk : X → X denotes the jump function associated with the edge,

– ℓ′ ∈ L denotes the head of the edge, i.e., the location reached after the occurrence of
the event.

The set of all possible guards of the HA is denoted G, while the set of all possible jump
functions is denoted J . ▲

The following subsections will define the semantics of the autonomous HA, explaining the mean-
ing of the previous definition.

9.1.1 Hybrid state

The state of the HA at time t ∈ R is a pair

y(t) = (ℓ(t), x(t))

where:

• ℓ(t) ∈ L is the discrete state, whose trajectory is piecewise constant;

• x(t) ∈ X is the continuous state, whose trajectory is piecewise continuous.

The initial state of the automaton at time t0 is a pair y0 ∈ L×X where

y0 = (ℓ(t0), x(t0)) .

In the following, unless explicitly mentioned, we will assume as initial time t0 = 0,

A hybrid automaton H with initial state y0 is denoted ⟨H, y0⟩.

The hybrid evolution, as explained in following two subsections, combines time-driven steps and
event-driven steps. A continuous step is related to the time-driven evolution of the continuous
state. A discrete step is related to the event-driven evolution of the discrete state and may also
cause discontinuities in the continuous state.

9.1.2 Continuous step

A continuous step while the automaton is in location ℓi consists in the evolution of the continuous
state x(t) while the discrete state does not change. The activity fi rules the evolution of the
continuous state according to the law

ẋ(t) = fi(x(t)) ∈ Rn.

This form of activity is called a differential equation.
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Note that the automaton can stay in location ℓi and evolve according to the activity law fi only
while the continuous state belongs to the location invariant, i.e., only while x(t) ∈ Ii.

When the continuous state leaves the invariant, the evolution of the automaton is forced to leave
the location with the occurrence of a discrete event. If x(t) ̸∈ Ii and no event may occur, the
evolution of the automaton is not defined.

9.1.3 Discrete step

A discrete step from location ℓ consists in the occurrence of an event represented by an edge
ek = (ℓ, gk, jk, ℓ

′). Such an event may occur (we also say that it is enabled) at time t only if the
continuous state belongs to the guard of the edge, i.e., if x(t−) ∈ gk. The occurrence of the event
updates the discrete state ℓ(t−) = ℓ according to

ℓ(t) = ℓ′

and updates the continuous state according to

x(t) = jk(x(t
−)).

We point out that when the continuous state belongs to the guard gk the event corresponding to
edge ek may occur but it does not have to, unless it is forced by the invariant.

Two special types of jump functions deserve to be mentioned.

• Reset to zero function. It is a jump function that always brings the continuous state to the
origin, i.e., such that jk(x) = 0 for all x ∈ X .

• Identity function. It is a jump function that does not cause a discontinuity in the continuous
state, i.e., such that for all x it holds jk(x) = x. The identity function is denoted jk(x) = id.

9.1.4 Graphical representation

It is possible to give a natural graphical representation of an HA. Each location is represented
by a node of the graph and within the node the activity and invariant of the location are shown.
Each edge of the graph corresponds to an edge of the automaton; labels on the edge describe
the equations that specify the guard (denoted by “?”) and the assignments that specify the jump
function (denoted by “:=”).

An invariant that coincides with the continuous state space (i.e., Ii = X) or a jump that coin-
cides with the identity function is usually omitted from the graphical representation, for sake of
simplicity.

Two examples are given.

Example 9.1 (Thermostat) Consider the thermostat described in Subsection 8.2 that must keep
the temperature x(t) of a room between TON = 20 and TOFF = 22 ◦C, switching on and off a
heat pump. The hybrid automaton H = (L,X,Act, Inv,E) describing this system is shown in
Fig. 9.1, where:
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Figure 9.1: Hybrid automaton of the thermostat.

• The discrete state space is L = {ℓ1, ℓ2}, with ℓ1 = ON and ℓ2 = OFF .

• The continuous state space1 is X = R.

• The set of activities is Act = {f1, f2} with

f1(x(t)) = −k[x(t)− Te] + q and f2(x(t)) = −k[x(t)− Te].

Hence the time-driven evolution in location ℓ1 is described by

ẋ(t) = −k[x(t)− Te] + q

while in location ℓ2 is described by

ẋ(t) = −k[x(t)− Te].

• The set of invariants is Inv = {I1, I2} with

I1 = {x | x ≤ 22} and I2 = {x | x ≥ 20},

because the heath pump can be ON only if the temperature is less than 22 ◦C and can be
OFF only if the temperature is higher than 20 ◦C degrees. The invariants are shown in the
graph between curly brackets.

• The set of edges is

E = {e1, e2} = {(ℓ1, g1, j1(x), ℓ2), (ℓ2, g2, j2(x), ℓ1)}.

Edge e1 has guard g1 = {x | x ≥ 22} and jump function j1 = id. Edge e2 has guard
g2 = {x | x ≤ 20} and jump function j2 = id. The jumps are omitted in the graph because
they are identity functions.

We assume the initial state is y(0) = (ℓ1, x(0)) where x(0) = 15. This is denoted in the figure by
means of an edge with no tail and entering the initial location; the initial continuous state is given
as an assignation associated with this edge. ⋄

Let us discuss the role played by the invariants in the previous example. Assume the HA is in
location ℓ1 where the temperature is increasing. As soon as the temperature reaches the value
22 ◦C two conditions are simultaneously verified. Firstly, edge e1 is enabled because a guard

1Since the temperature can never drop below the absolute zero, we could have been more precise, denoting X =
[−273.15,+∞) since we are considering temperature in the Celsius scale.
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Figure 9.2: Hybrid automaton of the bouncing ball.

value in g1 = {x | x ≥ 22} has been reached. At the same time, the continuous state reaches
a point on the boundary of the invariant I1 = (−∞, 22] and no further continuous evolution in
location ℓ1 is possible, because the increase of temperature would violate the invariant condition.
Thus the only possible evolution from this hybrid state consists in the occurrence of event e1 that
leads to the new location ℓ2. A similar analysis applies to the evolution in location ℓ2.

Example 9.2 (Bouncing ball) Consider the bouncing ball described in Subsection 8.3 positioned
at a height h0 over a horizontal plane with initial null velocity: due to the gravitational acceleration
g the ball drops down to the plane and bounces back, remaining always on a vertical line. The
hybrid automaton H = (L,X,Act, Inv,E) describing this system is shown Fig. 9.2, where

• The discrete state space is L = {ℓ} and contains a single location.

• The continuous state space is X = R≥0 × R because the continuous state is

x(t) =

 x1(t)

x2(t)


where the position of the ball x1(t) takes only non-negative values, while its velocity x2(t)
takes arbitrary real values.

• The set of activities is Act = {f} with

f(x1(t), x2(t)) =

 x2(t)

−g

 ,

because the time-driven evolution in location ℓ is described by ẋ1(t) = x2(t)

ẋ2(t) = −g

since the derivative of the position x1(t) is the velocity x2(t), while the derivative of the
velocity x2(t) is the gravitational acceleration g.

• The set of invariants is Inv = {I} with

I = {(x1, x2) | x1 ≥ 0}.
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• The set of edges is E = {e} = {(ℓ, g, j, ℓ)}. This edge has guard g = {(x1, x2) | x1 ≤
0, x2 < 0} ⊂ R≥0 × R because the ball bounces only when it is on the floor with negative
velocity. The jump function is j(x−) = [0 − αx−2 ]

T ∈ R2. Note that in this case the jump
function is explicitly represented in the graph by an assignment, being different from the
identity function. ⋄

The initial state is y(0) = (ℓ, x(0)) where x(0) = [ h0 0 ]T , as shown in the figure.

As in the example of the thermostat, the presence of the invariant ensures that as soon as the ball
reaches the horizontal plane (x1(t) = 0) and the edge is enabled, the corresponding event is forced
to occur.

9.2 Generalization of the basic model

In the previous section we have presented the basic description of an autonomous hybrid automa-
ton. It is possible to generalize the structure of such an automaton in several ways. Some of these
extended structures are presented in this section.

9.2.1 Differential inclusions

The form that the activity assumes in Definition 9.1 is a differential equation. It is a function
fi : X → Rn, specifying that in a location ℓi when the continuous state is x(t) ∈ Rn then its
instantaneous derivative takes the value

ẋ(t) = fi(x(t)) ∈ Rn.

A more general form of activity is a differential inclusion. It is a relation Fi : X → 2R
n

, specifying
that in a location ℓ when the continuous state is x(t) ∈ Rn then its instantaneous derivative takes
a value in a set

ẋ(t) ∈ Fi(x(t)) ⊆ Rn.

Thus in such a case the continuous derivative is not exactly known, but is only known to take
values in a set of cardinality possibly greater than one. Obviously, in such a case the evolution of
the system is not deterministic, and there is more than one possible evolution starting from a given
state. In such a case the activity set is defined as

Act = {F1, F2, . . . , Fs}.

Differential inclusions are a useful formalism to describe uncertainties on the continuous evolu-
tion such as those originating from the presence of external disturbances, i.e., unpredictable and
uncontrollable external inputs that can affect the state, as shown in the following example.

Example 9.3 A tank containing fluid has a net flow denoted by u(t). The state of the system is
represented by the fluid volume x(t) it contains and its evolution follows the law

ẋ(t) = u(t).
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Figure 9.3: A sample state trajectory of a system described by differential inclusion ẋ(t) ∈ [1, 2].

Assume the flow can take at any time instant an arbitrary value between 1 and 2. The autonomous
evolution of the system can be rewritten as a differential inclusion

ẋ(t) ∈ [1, 2].

One of the possible state trajectories x(t) starting from the initial condition x(0) = x0 is shown
in Fig. 9.3. Note that the slope of this curve is always between 1 and 2. Hence taken an arbitrary
point along this curve, the future evolution will lie in the cone whose extremal directions are the
straight line of slope 1 (lines a, a′ and a′′ in the figure) and the straight line of slope 2 (lines b, b′

and b′′ in the figure) passing through the point itself. ⋄

9.2.2 Jump relations

It is possible to generalize the jump function jk : X → X , associating with an edge ek a jump
relation jk : X → 2X to show that the occurrence of the event associated with ek at times t
changes the continuous state from x(t−) to a state x(t) ∈ jk(x(t

−)) ⊆ X . Such a relation allows
one to describe uncertainties on the value of the continuous state after the occurrence of the event.
Obviously, in such a case the evolution of the system is not deterministic, and there is more than
one possible evolution after the occurrence of the event.

Example 9.4 Let us consider a roulette player that owns a sum of money x(t) ∈ N and that at each
turn bets all her money on red. The HA describing the player has a single location ℓ that describes
the continuous evolution of the sum x(t) between two bets: since the sum when she is not betting
remains constant it holds ẋ(t) = 0. When the player bets, she can loose the sum of money or
double it. The betting is represented by edge e = (ℓ, g, j, ℓ) whose guard is g = {x ∈ N | x > 0}
and whose jump relation is j(x) = {0, 2x}. ⋄

9.2.3 Time-varying automata

A system is called time-varying if the model that describes its evolution changes with time. In the
case of a hybrid automaton several of its structural parameters may explicitly depend on the time
variable t ∈ R.
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Figure 9.4: Time-varying temperature thresholds for the thermostat during a period of 24 hours.

• To denote that the continuous dynamics in location ℓi is ruled by a time-varying differential
equation ẋ(t) = fi(x(t), t) ∈ Rn the activity associated with ℓi becomes a function fi :
X × R → Rn .

Similarly, To denote that the continuous dynamics in location ℓi is ruled by a time-varying
differential inclusion ẋ(t) ∈ Fi(x(t), t) ∈ Rn the activity associated with ℓi becomes a
relation Fi : X × R → 2R

n
.

• To denote that the invariant Ii(t) ⊆ X of location ℓi is a set that varies with time, one
defines it as a function I : R → 2X .

• To denote that the guard of edge ek is a set gk(t) ⊆ X that varies with time , one defines it
as a function gk : R → 2X .

• To denote that the jump function of edge ek is time-varying, one defines it as a function
jk : X × R → X . This implies that the occurrence of the event associated with ek at times
t changes the continuous state from x(t−) to a new value x(t) = jk(x(t

−), t) ∈ X .

Similarly, to denote that the jump relation of edge ek is time-varying, one defines it as a
relation jk : X ×R → 2X . This implies that the occurrence of the event associated with ek
at times t changes the continuous state from x(t−) to a new value x(t) ∈ jk(x(t

−), t) ⊆ X .

Example 9.5 Let us consider again the example of thermostat described in Example 9.1. Assume
that the temperature thresholds TON (t) and TOFF (t) for switching on and off the heat pump are
not constant but change periodically according to the time of the day as shown in Fig. 9.4 (the
figure shows the thresholds during a period of 24 hours).

The invariants and guards of the time-varying thermostat must thus be redefined as:

• I1 = {x | x ≤ TOFF (t)}

• I2 = {x | x ≥ TON (t)}

• g1 = {x | x ≥ TOFF (t)}

• g2 = {x | x ≤ TON (t)}
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All other structural elements are defined as in the stationary model described in Example 9.1. ⋄

Note that properly speaking a time-varying automata is a non autonomous model. In fact, an
autonomous system is usually defined a stationary (i.e., not time-varying) system with no external
inputs.

9.2.4 Set of initial states

Finally, one can generalize the notion of initial state to a set of initial states Y0 ⊆ L × X . This
allows one to model the uncertainty on the initial state of the automaton.

Example 9.6 Let us consider again the example of thermostat described in Example 9.1. Assume
that while it is known that the automaton is initially in location ℓ1, the initial continuous state is
not precisely known. If the initial temperature x(0) is only known to belong to the interval [10, 15]
we can define a set of initial states

Y0 = {(ℓ1, x0) | x0 ∈ [10, 15]}.

This should be represented in Fig. 9.1 with an arrow entering location ℓ1 and labeled x := [10, 15].
⋄

9.3 Hybrid automata with inputs

The evolution of a dynamical system is often influenced by external control inputs. In the case
of hybrid system two types of inputs are possible: continuous inputs, that steer the time-driven
evolution, and discrete inputs, that steer the event-driven evolution.

To model these systems we introduce the notion of Hybrid Automaton with Inputs. As discussed
in § 9.2.3, such an HA is a non-autonomous model.

Definition 9.2 A hybrid automaton with inputs is a structure

H = (L,X,D,U,Act, Inv,E)

where:

• L = {ℓ1, ℓ2, . . . , ℓs} is the discrete state space;

• X ⊆ Rn is the n-dimensional continuous state space;

• D = {d1, d2, . . . , dq} is a set of discrete inputs of cardinality q;

• U ⊆ Rr is the r-dimensional continuous input space;

• Act = {f1, f2, . . . , fs} is a set of activites which take the form fi : X × U → Rn;

• Inv = {I1, I2, . . . , Is} is a set of invariants which take the form Ii ⊆ X × U ;
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Figure 9.5: A piecewise constant boolean signal d1 and an impulsive boolean signal d2.

• E ⊆ L × ∆ × G × J × L is the set of edges of the automaton. Each edge represents an
admissible discrete event and is represented as 5-tuple

ek = (ℓ, δk, gk, jk, ℓ
′)

where:

– ℓ ∈ L denotes the tail of the edge, i.e., the location from which the event may occur,

– δk : {0, 1}Dk → {0, 1} denotes the input condition associated with the edge and is a
boolean function with domain Dk ⊆ D,

– gk ⊆ X × U denotes the guard of the edge,

– jk : X × U → X denotes the jump function associated with the edge,

– ℓ′ ∈ L denotes the head of the edge, i.e., the location reached after the occurrence of
the event.

Here ∆ denotes the set of all input conditions, G the set of all guards and J the set of all
jump functions of the HA. ▲

It is clear from this definition that the class of hybrid automata with inputs generalizes the class of
autonomous hybrid automata, in the sense that an autonomous HA is special case of an HA with
inputs where U = ∅ and D = ∅.

In the following the notation introduced in the previous definition is explained. Many of the
notions are similar to those already seen in the case of autonomous HS.

9.3.1 Hybrid state and inputs

As in the case of an autonomous HS the state at time t ∈ R is denoted by a pair

y(t) = (ℓ(t), x(t)) .

The discrete inputs are boolean signals, i.e., functions R → {0, 1}. The value of the j-th discrete
input at time t is denoted dj(t) ∈ {0, 1} for j ∈ {1, . . . , q}. A discrete input can be a piecewise
constant boolean signal, or an impulsive boolean signal representing a discrete event that takes the
value 1 only at the time of the event occurrence. Examples are shown in Fig. 9.5.
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The continuous input vector at time t is represented by a r-component vector

u(t) =


u1(t)

u2(t)
...

ur(t)

 ∈ U ;

9.3.2 Continuous step

The continuous evolution depends on the state and on the continuous input. While the HA is in
location ℓi the activity fi rules the evolution of the continuous state according to the law

ẋ(t) = fi(x(t), u(t)) ∈ Rn,

i.e., a differential equation that depends on the state and on the inputs.

The HA can stay in location ℓi and evolve according to the activity law fi only while the con-
tinuous state and the continuous input vector belongs to the location invariant, i.e., only while
(x(t), u(t)) ∈ Ii ⊆ X × U .

9.3.3 Discrete step

A discrete step from location ℓ consists in the occurrence of discrete event represented by an edge
ek = (ℓ, δk, gk, jk, ℓ

′).

We assume that the executions of the edge may depend on some discrete inputs: we denote Dk ⊆
D the set of discrete inputs associated with the edge.

The edge is enabled at time t if the following two conditions are simultaneous verified.

• (Guard condition) The continuous state x(t) and the continuous input vector u(t) satisfy the
guard, i.e., it holds: (x(t−), u(t−)) ∈ gk ⊆ X × U.

• (Input condition) The value of the discrete inputs at time t is such that the input condition
δk : {0, 1}Dk → {0, 1} associated with the edge is true. In other words, if the domain of
the input condition is Dk = {di1 , . . . , diq} ⊆ D then the input condition is verified when
δk(di1(t), . . . , diq(t)) = 1. Note that, as a particular case, the domain of the input condition
may be Dk = ∅: in such a case the input condition is always verified.

An edge ek is called autonomous when the domain of its input condition is Dk = ∅ and is called
controlled otherwise.

The occurrence of the enabled event represented by edge ek updates the discrete state ℓ(t−) = ℓ
according to

ℓ(t) = ℓ′
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ẋ = −x + u
x ≥ 3?
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Figure 9.6: Examples of different types of edge enabling: (a) autonomous edge; (b) controlled
edge; (c) switched edge.

and updates the continuous state according to

x(t) = jk(x(t
−), u(t−)).

The following example shall clarify the notion of edge enabling.

Example 9.7 Consider an HA whose continuous state is a scalar x(t) ∈ X = R and subject to a
scalar continuous input u(t) ∈ U = R. Assume the set of discrete input events is D = {d1, d2}.
In Fig. 9.6 three edges are considered.

• The autonomous edge e, shown in figure (a) has input condition with domain D = ∅ and its
enabling only depends on the guard condition. Thus the edge is enabled if and only if the
pair (x(t−, u(t−)) belongs to the guard g = {(x, u) | x ≥ 2u}. Since the input condition is
not relevant, it is usually omitted in the graph.

• The controlled edge shown in figure (b) requires both the guard and the input condition
to be satisfied for enabling. The guard condition is satisfied when x(t−) ≥ 3. The input
condition has domain D = {d1} and takes the form δ(d1) = ¬d1; it is satisfied when the
discrete input d1 is false, i.e., when d1 = 0.

• The controlled edge shown in figure (c) has guard g = X × U , i.e, the guard condition is
satisfied by all pairs (x, u) ∈ X × U . The enabling of the edge only depends on the input
condition with domain D = {d1, d2}, thus it is enabled if and only δ(d1, d2) = d1 ∧ d2 = 1
where ∧ denotes the logical and. Since the guard condition is not relevant, it is usually
omitted in the graph. This type of controlled edge is sometimes called switched edge. ⋄

In the semantics of an autonomous HA it is assumed that an enabled event must not necessarily
occur (unless it is forced by the invariant). To ensure that the definition of an HA with inputs is
consistent with this semantics, it is required that the same assumption holds for autonomous edges.
On the contrary, controlled edges exhibit a different behavior: the corresponding event occurs as
soon as the edge is enabled. Thus discrete control inputs force the occurrence of a guard enabled
event.

Example 9.8 (Circuit with diode) Consider the electric circuit shown in Fig. 9.7 where we take
as continuous state the voltage x(t) of the capacitor.

The evolution of this system is driven by two types of inputs.

• Continuous input: the voltage generator u(t).
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Figure 9.7: An electric circuit.
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Figure 9.8: Hybrid automaton with inputs modeling the electric circuit.

• Discrete input: the switch d ∈ {0, 1} that can be opened or closed.

This system has two different operation modes

Case 1: switch closed (i.e., d(t) = 1) and diode forward biased (i.e., u(t) ≥ x(t)): in this case
current can flow on the left hand side circuit loop. The capacitor is charged by the generator
according to:

ẋ(t) = − 1

RC
x(t) +

1

R1C
u(t) with R =

R1R2

R1 +R2

Case 2: switch open (i.e., d(t) = 0) or diode reverse biased (i.e., u(t) < x(t)): in this case current
cannot flow on the left hand side circuit loop. The capacitor discharges through R2 according to:

ẋ(t) = − 1

R2C
x(t)

Assuming that at the initial time t = 0 holds x(0) = 0, d(0) = 1 and u(0) ≥ 0 the HA with inputs
describing such a circuit is shown in Fig. 9.8.

• The discrete state space is L = {ℓ1, ℓ2} corresponding to the two cases mentioned above.

• The continuous state space is X = R because the unique continuous state x takes real
values.

• The set of discrete inputs is D = {d}.

• The set of continuous inputs is U = R because the unique continuous input u takes real
values.



120 Chapter 9. Hybrid automata

• The time-driven evolution in location ℓ1 is described by ẋ(t) = f1(x(t), u(t)) with activity

f1(x(t), u(t)) = − 1

RC
x(t) +

1

R1C
u(t),

while the time-driven evolution in location ℓ2 is described by ẋ(t) = f2(x(t), u(t)) with
activity

f2(x(t), u(t)) = − 1

R2C
x(t).

• The invariant associated with location ℓ1 is I1 = {(x, u) | x ≤ u}, while the invariant
associated with location ℓ2 is I2 = R2 (omitted in the graph).

• The set of edges is E = {e1, e2, e3}.

– Edge e1 = (ℓ1, δ1, g1, j1, ℓ2) has input condition δ1 = ¬d, guard g1 = {(x, u) | x, u ∈
R} = R2 and jump function2 j1(x, u) = x or equivalently j1 = id.

– Edge e2 = (ℓ1, δ2, g2, j2, ℓ2) has input condition δ2 = ∅, guard g2 = {(x, u) ∈ R2 |
x ≥ u} and jump function j2 = id.

– Edge e3 = (ℓ2, δ3, g3, j3, ℓ1) has input condition δ3 = d, guard g3 = {(x, u) ∈ R2 |
x ≤ u} and jump function j3 = id.

The initial state is y(0) = (ℓ1, 0) as shown in the figure. ⋄

9.4 Nondeterminism in hybrid automata

The three systems discussed in this chapter, namely the thermostat in Example 9.1, the bouncing
ball in Example 9.2 and the electric circuit in Example 9.8, have been described by deterministic
hybrid automata, i.e., automata that admit a unique evolution from a given initial state and for a
given input signal. However, in general a hybrid automaton may also exhibit a non deterministic
behavior, i.e., its evolution is not uniquely determined by the initial state and by the applied input.

Non determinism in a hybrid automaton is due to one (or more) of the following causes.

• Initial nondeterminism, due to the initial conditions. This occurs when the initial state y0 is
not completely specified but is only known to belong to a set Y0.

• Continuous step nondeterminism, due to the activities. As we have discussed, activities rep-
resented by differential inclusions are always nondeterministic. In the following chapter we
will also discuss special class of nonlinear differential equations that are nondeterministic
(because not Lipschitz).

• Discrete step nondeterminism, due to the guards. This occurs when there exists two edges
e1 = (ℓ, gi, ji, ℓ

′) and e2 = (ℓ, g2, j2, ℓ
′′) exiting from the same location ℓ and whose guards

have a non-null intersection, i.e.,
g1 ∩ g2 ̸= ∅.

2This is the particular form of the jump identity function for automata with inputs; such a jump function is usually
omitted in the graph.



9.4. Nondeterminism in hybrid automata 121

In this case from location ℓ if the continuous state x belongs to g1 ∩ g2 either event e1 or
event e2 may occur.

• Non determinism between continuous and discrete step. Assume that while in location ℓi,
the current continuous state x(t) reaches the guard of an output edge ek: this means that
event e may occur. If however, the invariant allows the continuous step to proceed, i.e.,
x+ fi(x)dt ∈ Ii, it may also be possible to remain in location ℓi.

• Non determinism of the jump function. This is due to jumps, when they are described by
relations, as opposed to functions.
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Chapter 10

Evolution of hybrid automata

In this chapter we address the basic analysis problem for a hybrid automaton, namely the problem
of determining its evolution, characterized by the interleaving of continuous and discrete steps.
The first section defines the concept of solution of a hybrid automaton, which takes the form of
a signal on a hybrid temporal trajectory. In the second section we examine some pathological
cases of the continuous evolution, providing necessary conditions for the existence of a solution
to a given differential equation; it will be shown that Lipschitz continuity plays a fundamental
notion in ensuring that such a solution is unique and global. In the third section we examine two
pathological discrete evolutions, leading to chattering and zenoness.

10.1 Solution of a hybrid automaton

The evolution of a hybrid automaton includes both continuous (or time-driven) steps, in which the
continuous state evolves as the time passes, and discrete steps, in which the evolution is driven by
the occurrence of events.

10.1.1 Solving a continuous step

Consider an autonomous (i.e., no inputs and stationary) time-driven system of order n with state
vector x. Its dynamical behavior is ruled by a differential equation of the type

ẋ(t) = f(x(t)) (10.1)

where t ∈ R is the independent variable time and x ∈ Rn is the dependent variable. Function
f : Rn → Rn is called activity.

Definition 10.1 (Solution of a differential equation) A solution1 for t ∈ [0, t′] of the differential
equation (10.1) with initial condition x(0) = x0 is a signal x(t) = ϕ(t, x0) such that for t ∈ [0, t′]
the function ϕ is differentiable in t and satisfies:

d

dt
ϕ(t, x0) = f (ϕ(t, x0)) ϕ(0, x0) = x0,

1Also called a Cauchy solution.

123
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or equivalently

ϕ(t, x0) = x0 +

∫ t

0
f(x(τ))dτ.

▲

A more general form of activity is represented by a differential inclusion of the type

ẋ(t) ∈ F (x(t)) (10.2)

where F : Rn → 2R
n

associates with each value of x a subset of Rn.

Definition 10.2 (Solution of a differential inclusion) A solution for t ∈ [0, t′] of the differential
inclusion (10.2) with initial condition x(0) = x0 is a signal x(t) = ϕ(t, x0) such that for t ∈ [0, t′]
the function ϕ is differentiable in t and satisfies the given inclusion, i.e., it holds that:

d

dt
ϕ(t, x0) ∈ F (ϕ(t, x0)) ϕ(0, x0) = x0.

▲

Note that the solutions described above may be:

• local: when they exist for time t ∈ [0, ε) with ε > 0;

• global: when they exist for all values of time t ∈ [0,∞).

This will be better discussed in the following subsections.

Note, finally, that it is straightforward to extend the concept of solution to non-autonomous sys-
tems, i.e., systems that are either subject to some input u(t) ∈ Rr or time-varying. In this case the
solution sought will assume the most general form for t ≥ t0

x(t) = ϕ(t, x0, u[t0,t], t0)

that depends on the values assumed by the input signal in the during time interval [t0, t] and on the
initial time t0 (it may not be possible to take t0 = 0 as in the case of time-invariant systems).

10.1.2 Solution of an autonomous hybrid automaton

As discussed in the previous section, the solution of an autonomous hybrid automaton H =
(L,X,Act, Inv,E) with initial state y0 = (ℓ0, x0) consists of the interleaving of continuous
steps and discrete steps. Assume the initial time instant is t0 = 0 and consider an evolution char-
acterized by the occurrence of discrete event at time instants: t1, t2, . . . with t0 < t1 < t2 < . . ..

The solution of the hybrid systems can be described by two signals

ℓ : R → L (evolution of the discrete state)

x : R → X (evolution of the continuous state)

that have the following properties.
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x := (x1,0, x2,0)

1

x1 2 ? x2 3 ?

x1 := 0

x1 = 1

x2 = 1

{ x1 2 }

2

x1 = 2

x2 = 1

{ x2 3 }

3

x1 = 1

x2 = 0

x1 := 1

Figure 10.1: Hybrid automaton in Examples 10.1 and 10.2.

(a) The signal ℓ(t) is piecewise constant, i.e., ℓ(t) = ℓ(i) is constant in each interval [ti, ti+1) for
i ∈ N.

(b) The signal x(t) is piecewise differentiable (and therefore piecewise continuous), i.e., is differ-
entiable in each interval [ti, ti+1) for i ∈ N.

(c) The initial value of the two signals coincides with the initial state of H , i.e., (ℓ(0), x(0)) =
y0 = (ℓ0, x0).

(d) For i ∈ N and t ∈ [ti, ti+1), if we denote f(i) : X → Rn the activity associated with the
current location ℓ(i) holds:

ẋ(t) = f(i) (x(t))

or equivalently

x(t) = x(ti) +

∫ t

ti

f(i) (x(τ)) dτ,

and x(t) ∈ I(i).

(e) For all instants ti (with i ∈ N+) in which a discrete event occurs and the discrete state changes
from location ℓ(i−1) to location ℓ(i), there exists an edge ek = (ℓ(i−1), gk, jk, ℓ(i)) ∈ E such
that:

• x(t−i ) ∈ gk, i.e., the continuous state before the event occurrence belongs to the guard
of the edge;

• x(ti) := jk(x(t
−
i )), i.e., the continuous state after the event occurrence is determined by

the jump function.

Example 10.1 Consider the hybrid automaton in Fig. 10.1 and assume the initial continuous state
is x(0) = (x1,0, x2,0) = (0, 0). The evolution of the HA, shown in Fig. 10.2 (a), starts with a
continuous step in location ℓ1 during which the continuous state evolves as x(t) = (t, t) until
time t1 = 2, when x(t−1 ) = (2, 2) is reached. Such a state is on the boundary of invariant I1 but
belongs also to the guard of the edge leading to location ℓ2: the occurrence of the corresponding
event updates the continuous state to x(t1) = (1, 2). In location ℓ2 the continuous state evolves
as x(t) = (2t − 3, t) until time t2 = 3, when x(t−2 ) = (3, 3) is reached. Such a state is on
the boundary of invariant I2 but belongs to the guard of the edge leading to location ℓ3: the
occurrence of the corresponding event updates the continuous state to x(t2) = (0, 3). In location
ℓ3 the continuous state evolves for t ≥ 3 as x(t) = (t− 3, 3). ⋄
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Figure 10.2: Two possible evolutions of the hybrid automaton in Fig. 10.1.

Although the previous definition of solution for an autonomous HA seems very general, it does
not take into account some particular evolutions in which two (or more) discrete steps occur si-
multaneously, without being separated by a continuous step. The following example shows such
a case.

Example 10.2 Consider again hybrid automaton in Fig. 10.1 and assume the initial continuous
state is now x(0) = (x1,0, x2,0) = (0, 2).

This new evolution of the HA, shown in Fig. 10.2 (b), starts with a continuous step in location ℓ1
during which the continuous state evolves as x(t) = (t, 2 + t) until time t1 = 2, when x(t−1 ) =
(2, 4) is reached. Such a state is on the boundary of invariant I1 but belongs to the guard of the
edge leading to location ℓ2: the occurrence of the corresponding event updates the continuous
state to x(t1) = (1, 4). This new state does not belong to the invariant I2 since x2 > 3 hence no
continuous evolution is possible but since it belongs to the guard of the edge leading to location ℓ3
the corresponding event may occur updating the continuous state to x(t1) = (0, 4). In location ℓ3
the continuous state evolves for t ≥ 2 as x(t) = (t− 2, 4).

This evolution is characterized by the occurrence of multiple discrete steps and by the assignment
of multiple values to the continuous state at time t1. ⋄

Another way of describing the evolution discussed in the previous example is the following: the
continuous steps in location ℓ2 has length zero. As a consequence, two events occur simultane-
ously at time t1 and we get two different values for the continuous state at time t1.
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To precisely describe general behaviors such as the one described above, we need to introduce
some new definitions.

Definition 10.3 A hybrid temporal trajectory τ of length k + 1 is a sequence of intervals

τ = (τ0, τ1, τ2, . . . , τk) = ([t0, t
′
0], [t1, t

′
1], [t2, t

′
2], . . . [tk, t

′
k]) (10.3)

where for i = 0, 1, . . . , k it holds: (a) ti ≤ t′i; (b) t′i−1 = ti. ▲

Here condition (a) means that the interval [ti, t′i] may have zero length (if ti = t′i), while condition
(b) specifies that the end point of one interval and the start point of the next interval coincide.

In the above definition the sequence can have finite length (k < +∞) or infinite. The intervals
are always closed with the possible exception of the last interval of a finite sequence, which could
take the form [tk,+∞).

Definition 10.4 A hybrid signal ξ taking values in the set Ξ and defined on a hybrid temporal
trajectory τ of length k + 1 is a sequence of functions

ξ = (ξ0, ξ1, ξ2, . . . , ξk) (10.4)

where for i = 0, 1, . . . , k the function ξi : τi → Ξ specifies the value of ξ(t) for all time instants
t ∈ τi = [ti, t

′
i]. ▲

The above definitions can be used to describe the evolution of a HA even in the case of continuous
steps of length zero.

Definition 10.5 (Solution of an autonomous hybrid automaton) The solution of an autonomous
hybrid automaton H = (L,X,Act, Inv,E) with initial state y0 = (ℓ0, x0) consists of a hybrid
time trajectory

τ = (τ0, τ1, τ2, . . . , τk) = ([t0, t
′
0], [t1, t

′
1], [t2, t

′
2], . . . [tk, t

′
k])

with t0 = 0 and two hybrid signals λ (with values in L) and χ (with values in X) on this trajectory
with

λ = (λ0, λ1, . . . , λk) (evolution of the discrete state)

χ = (χ0, χ1, . . . , χk) (evolution of the continuous state)

that have the following properties.

(a) Functions λi : τi → L are constant, for all i = 0, 1, . . . , k, hence we write λi = ℓ(i).

(b) Functions χi : τi → X are differentiable for all i = 0, 1, . . . , k.

(c) The initial value of the two signals coincides with the initial state of H , i.e., (λ(0), χ(0)) =
y0 = (ℓ0, x0).

(d) For all i = 0, 1, . . . , k let f(i) : X → Rn be the activity associated with location ℓ(i) = λi.
For every t ∈ (ti, t

′
i) it holds

χ̇i(t) = f(i) (χi(t))
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or equivalently

χi(t) = χi(ti) +

∫ t

ti

fi (χi(τ)) dτ.

(e) For all i = 1, . . . , k there is an edge ek = (λi−1, gk, jk, λi) ∈ E such that:

• χi−1(t
′
i−1) ∈ gk, i.e., the continuous state before the transition occurs belongs to the

guard of the edge;

• χi(ti) := jk(χi−1(t
′
i−1)), i.e., the continuous state after the transition occurs is consis-

tent with the jump function. ▲

Definition 10.4 may correctly describe all possible solutions of a HA, including those that contains
continuous steps of zero length.

Example 10.3 Consider the hybrid automaton in Fig. 10.1.

The evolution that starts from the initial location λ(0) = ℓ1 with initial continuous state ξ(0) =
(x1,0, x2,0) = (0, 0), shown in Fig. 10.2 (a), follows the hybrid temporal trajectory

τ = ([0, 2], [2, 3], [3,+∞])

and is described by the hybrid signals

λ = (ℓ1, ℓ2, ℓ3) and χ = ((t, t), (2t− 3, t), (t− 3, 3)).

The evolution that starts from the initial location λ(0) = ℓ1 with initial continuous state ξ(0) =
(x1,0, x2,0) = (0, 2), shown in Fig. 10.2 (b), follows the temporal trajectory hybrid

τ = ([0, 2], [2, 2], [2,+∞])

and is described by the hybrid signals

λ = (ℓ1, ℓ2, ℓ3) and χ = ((t, t+ 2), (1, 4), (t− 2, 4)).

⋄

10.2 Pathological cases of a continuous evolution

In this section we will study time-driven systems described by differential equations of the form
(10.1). The purpose is to identify certain pathological2 conditions related to their solutions and to
present sufficient conditions to ensure that they do not occur. See also [21] for more details.

2In mathematics a pathological phenomenon is one whose properties are considered atypically bad or counterintu-
itive.
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Figure 10.3: Two possible activities for the scalar differential equation ẋ(t) = f(x(t)). The
activity in figure (a) does not admit a solution for the initial value x(0) = 0. The activity in figure
(b) admits a solution for all initial values.

10.2.1 Existence of a solution

The first problem we study consists in determining whether a given differential equation admits a
local solution.

Definition 10.6 (Existence of a solution of a differential equation) The differential equation (10.1)
admits a solution for initial condition x0 if there exists ε > 0 and a differentiable function x(t)
that satisfies (10.1) for t ∈ [0, ε) with x(0) = x0. ▲

Note that the previous definition is local, because it requires that a solution exists on a time interval
[0, ε) arbitrarily small.

The following example shows that such a solution does not always exist.

Example 10.4 Consider the scalar differential equation

ẋ(t) = f(x(t)) with f(x) =

 1 if x < 0

−1 if x ≥ 0

where x ∈ R. The activity f(x) is shown in Fig. 10.3 (a).

If the initial condition is x(0) = 0, it is easy to verify that there exists no solution. Indeed, assume
by contradiction that such a solution exists. Since x(0) = 0, and f(0) = −1 < 0 there should
exist an arbitrarily small value ε > 0, such that the function x(t) is negative and decreasing for
every t ∈ [0, ε). But for negative values of x it holds f(x) = 1 > 0, and so x(t) can not be
decreasing, which contradicts the assumption that a solution exists. ⋄

The following result, whose proof is omitted, presents a sufficient condition for the existence of a
solution.

Theorem 10.1 (Existence of a solution) The differential equation (10.1) admits solution starting
from the initial condition x0 if the activity f(x) is continuous at x0.
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Figure 10.4: Solution of the differential equation in Example 10.5 for different values of the initial
condition.

Note that this condition does not hold for the differential equation studied in Example 10.4 because
its activity has a discontinuity in x = 0. However, we remark that the condition of Theorem 10.1
is not necessary for the existence of a solution as the following example shows.

Example 10.5 Consider the scalar differential equation

ẋ(t) = f(x(t)) with f(x) =

 −1 if x < 0

1 if x ≥ 0

where x ∈ R. The activity f(x) is also shown in Fig. 10.3 (b).

The solution of this differential equation starting from different initial conditions x0 (negative, null
and positive) always exists as shown in Fig. 10.4 and consists of a straight line whose slope is: 1
if x0 ≥ 0; −1 if x0 < 0. ⋄

10.2.2 Uniqueness of a solution

The second problem we consider is whether a given differential equation admits a unique solution,
i.e., whether it describes a deterministic system. The following example shows that this is not
always the case.

Example 10.6 Consider the scalar differential equation

ẋ(t) = f(x(t)) with f(x) =
√

|x| (10.5)

where x ∈ R. The activity f(x) is shown in Fig. 10.5 (a).

If the initial condition is x(0) = 0, it is easy to verify that there are two different solutions.

• The first solution is x(t) = 0, whose derivative is dx(t)/dt = 0, and clearly satisfies
Eq. (10.5).
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Figure 10.5: (a) Activity of the scalar differential equation in Example 10.6; (b) the two solutions
for initial condition x0 = 0.

• The second solution is x(t) = t2/4, whose derivative is dx(t)/dt = t/2, and also satisfies
Eq. (10.5) since for t ≥ 0 is holds

√
|x(t)| =

√
|t|/4 = t/2.

The two solutions are shown in Fig. 10.5 (b). ⋄

To characterize the uniqueness of a solution we first give the following definition.

Definition 10.7 (Lipschitz continuity) Let f : Rn → Rn be a function.

• Given a subset A ⊂ Rn, the function is called Lipschitz continuous in A if there exists a real
number k ≥ 0, called Lipschitz constant, such that for each pair x, x′ ∈ A it holds3:

||f(x)− f(x′)|| ≤ k||x− x′||.

• The function is called locally Lipschitz continuous if it is Lipschitz continuous in every
bounded set A ⊂ Rn.

• The function is called Lipschitz continuous 4 if it is Lipschitz continuous in Rn. ▲

In other words, Lipschitz continuity requires that the rate of change of a function be somehow
bounded.

Consider the particular case of a scalar function. In this case the rate of change is represented
by the absolute value of the function derivative f ′(x) = df/dx and we can give the following
interpretation. Lipschitz continuity on a subset A requires that the absolute value of the derivative
is bounded in A. Local Lipschitz continuity requires that the absolute value of the derivative is
bounded in any bounded interval. Global Lipschitz continuity requires that the absolute value of
the derivative is bounded everywhere. The following example will clarify the definition.

3Here ||·|| denotes the euclidian 2-norm (see Definition C.3).
4A function that satisfies this property is also sometimes called globally Lipschitz continuous.
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Example 10.7 Consider the following scalar functions.

• Function f(x) = 3|x| is Lipschitz continuous with Lipschitz constant k = 3 because the
absolute value of its derivative is |f ′(x)| = 3.

• Function f(x) = x2 is not Lipschitz continuous because |f ′(x)| = 2|x| which is unbounded
as x → ±∞. However, the function is locally Lipschitz continuous because in any bounded
interval A = [x1, x2] the absolute value of its derivative is bounded with Lipschitz constant
k = 2max {|x1|, |x2|}.

• Function f(x) =
√

|x| is not locally Lipschitz continuous because |f ′(x)| = sign(x)/(2
√
|x|)

which is unbounded in any finite set that includes the origin. However, the function is Lips-
chitz continuous in every subset of R which does not include the origin.

⋄

The following result, whose proof is omitted, presents a sufficient condition for the uniqueness of
a solution.

Theorem 10.2 (Uniqueness of a solution) The differential equation (10.1) admits a unique solu-
tion if its activity f(x) is locally Lipschitz continuous5.

Note that this condition does not hold for the differential equation studied in Example 10.6 be-
cause, as discussed in Example 10.7, its activity is not locally Lipschitz continuous. However,
we remark that the condition of Theorem 10.2 is not necessary: the differential equation studied
in Example 10.5, despite not having a continuous activity (and thus not even locally Lipschitz
continuous) admits one and only one solution for all initial conditions.

10.2.3 Globality of a solution

The third problem we consider is whether a given differential equation admits a global solution,
i.e., a solution that is valid for all values of time t. The following example shows that this is not
always the case.

Example 10.8 Consider the scalar differential equation

ẋ(t) = f(x(t)) with f(x) = x2 (10.6)

where x ∈ R.

The form that assumes the solution of this differential equation depends on the initial condition.

Case 1: x0 = 0. It is easily verified that in this case the solution is x(t) = 0 for each t ≥ 0.

5This result is also known as Theorem of Picard-Lindelöf, or Picard existence theorem or Cauchy-Lipschitz theo-
rem.
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Figure 10.6: Solution of the differential equation in Example 10.8: (a) x0 < 0, (b) x0 = 1/T > 0.
In case (b), only the part of the curve for t ∈ [0, T ) describes the correct solution.

Case 2: x0 ̸= 0. In this case, we can integrate by parts to obtain

dx

dt
= x2 −→ dx

x2
= dt −→

∫ x(t)

x0

dx

x2
=

∫ t

0
dτ −→ − 1

x(t)
+

1

x0
= t

from which, denoting T = 1/x0, one obtains:

x(t) =
1

T − t
. (10.7)

If the initial condition is x0 < 0 (and hence T < 0), Eq. (10.7) shown in Fig. 10.6 (a) represents a
global solution: note that as time increases, the signal asymptotically goes to zero.

However, if the initial condition is x0 > 0 (and hence T > 0), Eq. (10.7) shown in Fig. 10.6 (b)
does not represent the solution for all values of t. In fact, first we note that x(t) is not defined in
t = T where the function has a vertical asymptote. Moreover, for values of t > T signal x(t)
is negative and this is obviously not consistent with Eq. (10.6) which implies that the solution is
always non-decreasing, and thus, for every t > 0 should holds x(t) ≥ x0 > 0. Here Eq. (10.7)
represents the solution of (10.6) only for t ∈ [0, T ) and thus this solution is not global. ⋄

The following result, whose proof is omitted, presents a sufficient condition for the globality of a
solution.

Theorem 10.3 (Globality of a solution) The differential equation (10.1) admits a global solution
if the activity f(x) is Lipschitz continuous.

Note that this condition does not hold for the differential equation studied in Example 10.8 be-
cause, as discussed in Example 10.7, its activity is not Lipschitz continuous but only locally Lip-
schitz continuous. However, we remark that the condition of Theorem 10.3 is not necessary: the
differential equation studied in Example 10.5, despite not having a continuous activity (and thus
not even Lipschitz continuous) admits a global solution from all initial conditions.
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10.2.4 Filippov solution and sliding mode

For time-driven systems, the Russian mathematician Aleksei Fedorovich Filippov has proposed a
generalized definition for the solution of a differential equation to account for possible disconti-
nuities in the activity function.

We begin by recalling some classical definitions from mathematical analysis.

Definition 10.8 Consider a set X ⊂ Rn.

• An open ball centered at point x ∈ X of radius δ is the set of points

B(x, δ) = {x′ ∈ Rn | ||x′ − x|| < δ}

whose distance from x is less than δ.

• Point x ∈ X is called an interior point of X if there exists an open ball centered at x
contained in X . The set of interior points of X is called interior of X and is denoted
inter(X).

• Point x ∈ Rn is called a closure point of X if every open ball centered at x contains at least
a point of X (possibly x itself). The set of such points is called closure of X and is denoted
clos(X). Set X is called closed if X = clos(X).

• Set X has measure zero if, for every ε > 0, there exists a set R that covers X and can be
written as a countable product of n intervals whose total volume less than ε, i.e., there exists
a set R ⊂ Rn such that:

X ⊂ R, R =
⋃
i

Ri, Ri =
n∏

j=1

[ai,j , bi,j ] ,
∑
i

n∏
j=1

(bi,j − ai,j) < ε.

We write µ(X) = 0 to denote that X has zero measure.

• Set X is called convex if the following applies:

x′, x′′ ∈ X −→ (∀a ∈ [0, 1])
(
a x′ + (1− a) x′′,

)
∈ X.

• The convex hull of X is the smallest closed subset of Rn containing X and is denoted
conv(X). ▲

The notion of zero-measure set warrants some comments. A set of measure zero x has no interior
points6, that is inter(X) = ∅. Also in Rn curves of dimension less than n have measure zero. For
example, in R a point (or in general, any countable set of points) has zero measure, in R2 points,
segments, lines and in general one dimensional manifolds have measure zero.

6However, there also exist sets with non-zero measure that have no interior points. For example, let Q be the set of
rational numbers and consider the set A = [0, 1] \ Q that consists of all irrational numbers between 0 and 1. Since Q
is countable, it has zero measure while the set [0, 1] has non-zero measure. Therefore, the set A (which is obtained by
[0, 1] removing a set of measure zero) has non-zero measure as well. We observe that any ball centered at an irrational
number contains infinitely many rational points (Q is dense in R) and so inter(A) = ∅.
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The following is a simplified presentation of the Filippov solution that pertains to autonomous
systems. The idea behind this definition is as follows: if at point x activity f(x) is discontinuous,
one should consider all values that it takes in an arbitrary small ball centered at x, taking care to
exclude (if necessary) those values that f(x) takes only in subsets of measure zero. The convex
hull of all the remaining values should be considered and used to define a differential inclusion:
the solution of this inclusion is the Filippov solution of the original differential equation.

Definition 10.9 (Filippov solution) Given differential equation (10.1), its Filippov solution in
[0, ε) is a function x(t), absolutely continuous in [0, ε), that for almost every t ∈ [0, ε) is a
solution of the differential inclusion

ẋ(t) ∈ F (x(t)) where F (x) =
⋂
δ>0

⋂
µ(M)=0

conv{f(x′) | x′ ∈ B(x, δ) \M}, (10.8)

where ∩δ>0 denotes the intersection for all ball of radius δ > 0, and ∩µ(M)=0 the intersection for
all sets M of measure zero. ▲

Before showing an example, let us note that a Filippov solution is a generalization of a Cauchy
solution given in Definition 10.1: in fact, if a differential equation admits a Cauchy solution then
this is also a Filippov solution. Consider for example the case of an activity f that is continuous
in a point x: in this case it holds F (x) = f(x) ∈ Rn and therefore the Filippov solution coincides
with the Cauchy solution (at least locally).

Example 10.9 Consider again the time-driven system in Example 10.4 described by the differen-
tial equation

ẋ(t) = f(x(t)) with f(x) =

 1 if x < 0

−1 if x ≥ 0
(10.9)

We have already noted that this equation admits a Cauchy solution only for x ̸= 0. There exists,
however, a Filippov solution in x = 0 . In fact, a ball of radius δ centered at the origin is the open
segment B (0, δ) = (−δ, δ) and for x′ ∈ (−δ, δ) it holds:

f(x′) = 1 if x′ ∈ (−δ, 0), f(x′) = −1 if x′ ∈ [0, δ).

These values are taken on subsets of B(0, δ) of non-zero measure and therefore must be taken into
account to calculate the Filippov solution. It is therefore

F (0) =
⋂
δ>0

⋂
µ(M)=0

conv{f(x′) | x′ ∈ B(0, δ) \M} = conv{−1, 1} = [−1, 1]

and therefore the solution of the differential equation according Filippov (10.9) coincides with the
solution of the differential inclusion

ẋ(t) ∈ F (x(t)) with F (x) =


1 if x < 0

[−1, 1] if x = 0

−1 if x > 0

(10.10)
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Figure 10.7: (a) Filippov solution of the equation in Example 10.9; (b) the approximated solution
of the hybrid automaton in Example 10.11.

Note that this inclusion has a solution for x0 = 0: it is the constant signal x(t) = 0 whose
derivative is ẋ(t) = 0 ∈ [−1, 1].

The solution of (10.9) from an initial value x0 = 2 is also shown in Fig. 10.7 (a). The signal x(t)
initially decreases with unitary slope until it reaches x(2) = 0 and from this moment the Filippov
solution is the constant signal x = 0.

To conclude, next example shows a Filippov solution that is computed disregarding the values that
the activity takes on sets of zero measure.

Example 10.10 Consider the differential equation

ẋ(t) = f(x(t)) with f(x) =


1 if x < 0

3 if x = 0

−1 if x > 0

(10.11)

which differs from (10.9) only for the value the activity takes in the discontinuity point x = 0.

To compute a Filippov solution in x = 0 we consider a ball of radius δ centered at the origin
B(0, δ) = (−δ, δ) and for x′ ∈ (−δ, δ) it holds:

f(x′) = 1 if x′ ∈ (−δ, 0), f(0) = 3, f(x′) = 1 if x′ ∈ (0, δ).

Intervals (−δ, 0) and (0, δ) have non-zero measure and therefore the values taken by the activity
herein must be taken into account. Conversely, the value taken by the activity in point x = 0
(which is a set of measure zero) should be ignored.

Therefore as in the case of eq. (10.9) it holds:

F (0) =
⋂
δ>0

⋂
µ(M)=0

conv{f(x′) | x′ ∈ B(0, δ) \M} = conv{−1, 1} = [−1, 1]

and the Filippov solutions of (10.9) and (10.11) coincide. ⋄
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Figure 10.8: Hybrid automaton in Example 10.11.

10.3 Pathological cases of a hybrid evolution

The evolution of a hybrid system can be pathological even if its activities are regular function,
e.g., Lipschitz continuous. The two pathological phenomena we study are: switching at infinite
frequency and zenoness.

10.3.1 Switching at infinite frequency

This case arises when no continuous step is possible any more and therefore the only possible
evolution consists in an infinite sequence of discrete steps without, however, progression of time.

Example 10.11 Consider the hybrid automaton shown in Fig. 10.8 where the continuous state is
the scalar variable x(t) ∈ R. The initial state is y0 = (ℓ(0), x(0)) = (ℓ2, 2), as shown in the
figure. The evolution starts in location ℓ2 with a continuous step and the continuous state takes the
value x(t) = 2− t.

At time instant t′ = 2 the continuous state reaches the value x(t) = 0 on the boundary of invariant
I2 and a discrete step must occur, reaching location ℓ1. However, in location ℓ1 no continuous step
is possible from x = 0: in fact being ẋ(t) = 1 such a step would yield a value of x > 0 violating
invariant I1. Therefore a discrete step must occur, reaching location ℓ2. However, in location ℓ2
no continuous step is possible from x = 0: in fact being ẋ(t) = −1 such a step would yield a
value of x < 0 violating invariant I2. Therefore a discrete step must occur, reaching location ℓ1.
And so on.

In practice, this evolution follows the hybrid temporal trajectory

τ = ([0, 2], [2, 2], [2, 2], [2, 2], [2, 2], · · · )
and is described by the hybrid signals

λ = (ℓ2, ℓ1, ℓ2, ℓ1, ℓ2, . . . ) and χ = (2− t, 0, 0, 0, 0, · · · ).

Such an infinite hybrid temporal trajectory where the time variable t is stuck at a constant value
(t′ = 2 in the example) and cannot progress any further is seen as pathological. ⋄

It is easy to understand that the previous example presents in a hybrid framework the same phe-
nomenon that in Example 10.4 was studied in a time-driven framework. In both cases no continu-
ous evolution is possible when the continuous state is 0.

The example also pinpoints another important issue. For time-driven systems there exists simple
conditions that exclude the occurrence of such a pathological case, namely the continuity of the
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activity function. For a hybrid automaton, conversely, even the most regular activities can lead
to pathological cases: in the case of Example 10.11 all activities are constant functions, and thus
Lipschitz continuous and yet no solution exists for x = 0.

10.3.2 Regularization of hybrid automata and chattering

We have already mentioned that the time-driven system described by eq. (10.9) is substantially
similar to the hybrid system described by the automaton in Example 10.11 and shown in Fig. 10.8.
For the time-driven system we have seen that a Cauchy solution does not exists in x = 0 but that a
Filippov solution may be found. Similarly, for the HA we have seen that a standard solution does
not exists when x = 0 due to occurrence of an infinite number of discrete events at the same time
instant. Here we present a general approach, called regularization, to approximate such HA with
an HA that does admit a solution. Two different regularization techniques are presented. The first
one is called time regularization. The second one is called spatial regularization.

Time regularization

This technique consist in modifying the model so that the time between two consecutive discrete
steps can never be zero. This is ensured assuming that whenever a transition occurs and the
automaton enters a location, it can not leave it before a minimum dwell time δ > 0 has elapsed.

To enforce this, the structure of the automaton must be changed. Each location ℓ will be replaced
by two locations ℓ′ (in-location) and ℓ′′ (out-location). All edges previously inputting ℓ will now
input ℓ′; all edges previously outputting from ℓ will now output from ℓ′′; a new edge will join ℓ′ to
ℓ′′.

• In the first location ℓ′ the automaton must dwell for a time greater than or equal to δ. To
keep track of this a clock is necessary: it consists of a variable θ ∈ R which is initialized
to zero when entering the location and that grows with constant derivative θ̇ = 1. The edge
outputting ℓ′ has guard θ ≥ δ: when this condition is verified location ℓ′ must be abandoned
to pass to ℓ′′. This is ensured by an invariant Iℓ′ = {θ ≤ δ} that forces the transition. Note
that the original invariant Ii of location ℓ is not active in ℓ′.

• The second location ℓ′′ is reached after the minimum dwell time δ has elapsed and describes
a regular time-driven evolution that satisfies invariant Ii = Ii. The clock θ will be defined
in this location as well, but its value is not significant and therefore it is assumed that it does
not change (θ̇ = 0).

An example of application of this technique is now discussed.

Example 10.12 Consider the hybrid automaton in Example 10.11 and shown in Fig. 10.8. The
automaton obtained from it by time regularization is shown in Fig. 10.9.

The evolution of this automaton, assuming a minimal dwell δ = 0.05 time units is shown in
Fig. 10.7 (b). Once the continuous state reaches the origin a chattering, i.e., a finite frequency
switching between ℓ1 and ℓ2, is established. Note that as the minimal dwell time δ goes to zero,
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Figure 10.9: Time regularization of the hybrid automaton in Example 10.11.

the chattering frequency increases and the amplitude of the continuous state oscillation is reduced.
Therefore, for δ → 0 the regularized solution of the hybrid automaton in Fig. 10.7 (b) tends to the
Filippov solution in Fig. 10.7 (a). ⋄

Space regularization

This technique consists in modifying the model so that whenever a transition occurs and the HA
enters a location with a continuous state value x̄, it must evolve to reach a new state x sufficiently
far from x̄ before a new transition occurs. Sufficiently far means that there exists an arbitrary
ε > 0 such that ||x− x̄|| ≥ ε.

To enforce this, the structure of the automaton must be changed. Each location ℓi will be replaced
by two locations ℓ′ (in-location) and ℓ′′ (out-location). All edges previously inputting ℓ will input
ℓ′; all edges previously outputting from ℓ will now output from ℓ′′; a new edge will join ℓ′ to ℓ′′.

• In the first location ℓ′ the automaton must dwell until the continuous state has sufficiently
progressed. To keep track of this one needs to store the value x̄ taken by the continuous state
when entering the location: this is done by variable ξ ∈ Rn that is initialized to x̄ by the
edges inputting the location and whose value does not vary, i.e., ξ̇ = 0. The edge outputting
ℓ′ has guard ||x− ξ|| ≥ ε: when this condition is verified location ℓ′ must be abandoned to
pass to ℓ′′: this is ensured by an invariant Iℓ′ = {||x− ξ|| ≤ ε} that forces the transition.
Note that the original invariant Ii of location ℓ is not active in ℓ′.

• The second location ℓ′′ is reached after the continuous state has had a progression of suffi-
cient amplitude and describes a regular time-driven evolution that satisfies invariant Iℓ′′ =
Ii. The constant variable ξ will be defined in this location as well, but its value is not
significant.

An example of application of this technique is now discussed.
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Figure 10.10: Space regularization of the hybrid automaton in Example 10.11.

Example 10.13 Consider the hybrid automaton in Example 10.11 and shown in Fig. 10.8. The
automaton obtained from it by space regularization is shown in Fig. 10.10. ⋄

10.3.3 Zenoness

As discussed in the previous section, the establishment of a switching at infinite frequency in a
hybrid system may entail the non-existence of a solution, a problem that may also occur in a time-
driven system, as discussed in § 10.2.1. Another peculiar hybrid phenomenon is that of zenoness
that entails a pathological condition similar to that studied in § 10.2.3 for time-driven systems: the
absence of a global solution.

The name of this phenomenon derives from the Greek philosopher Zeno of Elea (489 b.c. – 431
b.c.). Convinced that movement is an illusion, to support his thesis he proposed several thought
experiments among which the most famous is the paradox of Achilles and the tortoise 7. The
paradox is based on the occurrence of an infinite sequence of events in a finite time, a pathological
phenomenon that can also occur in hybrid automata, as the following example shows.

Example 10.14 Consider bouncing ball, already discussed in Example 9.2 and described by the
hybrid automaton shown in Fig. 10.11. Here x1(t) is the height of the ball and x2(t) represents its
speed. Due to the gravitational acceleration g the ball reaches the floor with negative speed and
bounce back remaining on the vertical axis. The bounce is partially elastic: if it occurs at a time
instant t, the velocity is updated from value x2(t

−) < 0 to value x2(t) = −αx2(t
−) > 0, where

α ∈ (0, 1).

We will now study the evolution of the system starting from time t0 = 0, assuming the initial

7In the words of Jorge Luis Borges (”Avatars of the Tortoise”) this is the paradox involving Achilles, symbol of
speed, that must reach the turtle, symbol of slowness. Achilles runs ten times faster than the tortoise and gives the
animal a headstart of ten meters. Achilles runs those ten meters, the tortoise one; Achilles runs that meter, the tortoise
runs a decimeter; Achilles runs that decimeter, the tortoise runs a centimeter; Achilles runs that centimeter, the tortoise,
a millimeter; and so on to infinity, without the tortoise ever being overtaken.
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Figure 10.11: Hybrid automaton of the bouncing ball in Example 10.14.

continuous state is x1(0) = h0 and x2(0) = 0. For k = 1, 2, . . ., let tk be the time instant in which
the ball touches the ground for the k-th time. We also denote vk = x2(t

−
k ) < 0 the velocity with

which the ball reaches the ground at the k-th bounce and ∆k = tk − tk−1 the duration of the k-th
continuous step.

At the first bounce it holds: 
v1 = −

√
2gh0

∆1 = −v1
g

=

√
2h0
g

(10.12)

In fact when the ball reaches the ground, its initial potential energy Ep = mgh0 is all converted
in kinetic energy Ek = 1

2mv21 and from the equality Ep = Ek one gets the first equation (10.12).
The second equation (10.12) can be proved observing that v1 = x2(t

−
1 ) = −gt1 = −g∆1.

Similarly, one can show that for the subsequent bounces (k > 1) it holds:
vk = αvk−1 = αk−1v1 = −αk−1

√
2gh0

∆k = −2
vk
g

= 2αk−1∆1 = 2αk−1

√
2h0
g

(10.13)

Thus the k-th bounce occurs at time:

tk =

k∑
i−1

∆i = (∆1 + 2α∆1 + · · ·+ 2αk−1∆1)

= 2∆1(1 + α+ · · ·+ αk−1)−∆1 = 2∆1
1− αk

1− α
−∆1 =

1 + α− 2αk

1− α
∆1.

and there exists a finite time

Tzeno = lim
k→∞

tk =
1 + α

1− α
∆1 =

1 + α

1− α

√
2h0
g

within which the system performs an infinite number of bounces. The time evolution of the system
follows, therefore, a hybrid temporal trajectory

τ = ([t0, t1], [t1, t2], [t2, t3], . . .)
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Figure 10.12: Evolution of the bouncing ball in Example 10.14.

of infinite steps but that does not progress beyond time Tzeno. This condition is obviously patho-
logical.

In Fig. 10.12 we have represented the evolution of the bouncing ball assuming: h0 = 1 and
α = 0.8, in which case it holds Tzeno = 4.0637. ⋄

If a hybrid automaton is zeno, i.e., if its evolution contains an infinite number of switchings in
a finite time, it is often the case that the model does not correctly describe the behavior of the
physical system. This may result from an error in modeling or by some simplifying assumption
adopted in deriving the model.

For example, in the model of the bouncing ball the assumption that the bounces occur in zero
time is clearly a simplifying assumption: in reality the bouncing is a complex phenomenon and
requires a finite time. Assuming that the bounce is instantaneous may be reasonable during the
first bounces, whose duration is negligible compared to the duration of the first time steps ∆i.
However, as the durations of the time steps tend to zero one can not ignore the duration of the
bounce.

Finally, it should be noted that a zeno automaton can be regularized using the time or spatial
regularization described in the previous section.
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State transition systems, reachability
and equivalence

In this chapter we study the reachability of a hybrid system, i.e., we want to determine the set of
states reachable from a given initial state. To do this, we introduce an abstract model, called state
transition system, which is particularly suited for this purpose and characterize its reachability set.
We then consider the concept of equivalence between state transition systems and define several
type of equivalences: language equivalence, bisimulation and isomorphism. A bisimulation rela-
tion can also be defined on the state set of a state transition system: this induces a partition of the
reachability set into equivalent classes, and the reachability problem for the original system can
be converted into a simpler problem for the quotient system.

11.1 Reachability and verification

In this first section, we present some qualitative considerations to motivate the interest for this
study.

11.1.1 Evolution, control and verification problems

In systems science an evolution problem consists in determining the evolution of a system knowing
its initial state and its input. The solution of this problem consists in a state evolution, i.e., a signal
that describes how the state evolves over time: the set of all possible evolutions is called behavior
of the system. In the previous chapter we have addressed this problems for a system described by
a hybrid automaton.

A control problem consists in imposing a desired behavior to a given system, that we call plant.
One must first identify an appropriate specification to describe the desired behavior. Secondly, one
has to design a device, called controller, which drives the evolution of the plant by applying to it
suitable inputs so that the specification is met. The new system, which consists of the plant and
the controller, is called1 controlled system.

1The most common control structure is the classical feedback loop well known from the introductory courses of

143
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There is a small but significant difference between the two problems mentioned above: in the first
case the object of study is a given system, while in the second one the objective is to build the new
controlled system, which can then be viewed as a design product.

Half way between the two previous problem, one can define a verification problem, which consists
in proving or disproving the correctness of a system behavior with respect to a certain formal
specification or property. If we think of a system as a product, solving a verification problem
allows us to answer the question, ”Are we correctly building the product?”

In control theory a verification problem often follows from a control problem for which there is no
exact mathematical approach to design a closed loop system that meets the specifications: in such
a case the design is done by trial and error methods. Similarly, in other areas such as computer
science and telecommunications, verification is needed because the system under study (e.g., a
software, a protocol) is built with informal methods and only after it has been built it is possible
to check if it meets the given specifications. The discipline that addresses this problem is called
formal verification.

11.1.2 Formal verification and specifications

In the domain of formal verification it is customary to distinguish between two main classes of
specifications.

• Safeness specifications: they ensure that an abnormal condition is never be achieved. (Noth-
ing bad can ever happen.)

• Liveness specifications: they ensure that a desired condition can always be reached. (Some-
thing good can always happen.)

An example will clarify these qualitative definitions.

Example 11.1 Consider an AGV (Automated Guided Vehicle) system that consists of two trolleys
each one moving along its own fixed path in a factory. The paths of the two trolleys have a zone
of intersection.

Obviously, one does not want the two trolleys to collide. This can be formalized by defining the
following specification: ”The two trolleys should never be simultaneously passing in the intersec-
tion zone.” This is a safeness specification to prevent reaching an abnormal situation.

There are several ways to impose the previous specification: as an example one could consider a
policy that never admits in the intersection zone one of the two trolleys (for example the first). This
policy, however, would not be appropriate because one requires that each trolley should be able to
move along its path. Thus one should also take into account the following specification: ”Each
trolley should eventually be admitted in the intersection zone.” This is a liveness specification to
ensure that a desirable situation is reachable. ⋄

control theory. For this reason the controlled system is also often called closed-loop system.
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11.1.3 Analysis vs. verification

Comparing a verification problem (VP) with an evolution problem (EP), we can observe the fol-
lowing.

• On one hand, a VP appears to be more complicated than an EP. In fact, by means of simple
analytical tools or even by simulation one may easily determine a particular evolution of
a system thus solving the EP. However, if the result of the simulation shows that a given
specification is not violated by this evolution we still have no positive answer to the VP,
because we cannot infer that the specification is not violated for all possible evolutions.

The problem arises from the fact that in general a system has many possible evolutions
depending on its initial state, on the form of its input signal, or simply due to its nondeter-
ministic nature. So in general it is not possible to verify properties of safeness and liveness
through tools such as simulation but other formal approaches are necessary.

• On the other hand, the VP appears simpler than the EP. In fact, for the verification of a
specification is not necessary to exactly determine the possible evolutions of a system, i.e.,
the exact value of the state at all instants of time, but only ensure that certain abnormal states
can not be reached or, conversely, that certain desired states are still reachable.

In the example of the AGV system previously described, for example, one wants to ensure
that a state in which the two trolleys are both in the area of intersection is never reached and
that for each trolley a state in which it is in the area of intersection is still reachable. It is
however not necessary to determine how the state of the system will evolve with time.

The above qualitative discussion highlights that reachability analysis plays a key role in formal
verification. In this chapter we present a few techniques for the reachability analysis of the models
we study, namely hybrid automata.

11.2 State transition systems

We define in this section a general model which is especially suited for the study of reachability.

Definition 11.1 (STS) A state transition system (STS) is a 5-tuple

T = (S,Σ,−→, S0, SF )

where:

• S is a (possibly infinite) set of states;

• Σ is a (possibly infinite) set of generators;

• −→⊆ S × Σ × S is a transition relation: to denote that (s, σ, s′) ∈−→ for s, s′ ∈ S and
σ ∈ Σ we also write s

σ−→ s′;

• S0 is a set of initial states;
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Figure 11.1: A nondeterministic automaton.

• SF is a set of final states. (This set can be omitted when not necessary.) ▲

A state transition system can be seen as an extension of an automaton and for each automaton
there exists a natural description in terms of STS.

Remark 11.1 A nondeterministic finite automaton G = (X,E,∆, x0, Xm) can be represented
as a STS T = (S,Σ,−→, S0, SF ) with a finite state set S = X , finite set of generators Σ = E,
transition relation −→ that coincides with the transition relation of the automaton, set of initial
states S0 = {x0} that only contains the initial state of the automaton and set of final states
SF = Xm that coincides with the set of finite states of the automaton. ⋄

The following example will clarify the previous proposition

Example 11.2 Consider the nondeterministic finite automaton shown in Fig. 11.1. It has set of
states X = {x0, x1, x2}, alphabet E = {a, b}, initial state x0 and set of final states Xm =
{x0, x2}.

This automaton can also be represented as a STS T = (S,Σ,−→, S0, SF ) with:

• S = X;

• Σ = E ;

• −→= {(x0, a, x1)(x1, b, x0), (x1, b, x1)(x1, a, x2)(x2, a, x0)},

• S0 = {x0},

• SF = {x0, x2}. ⋄

The natural correspondence between the structure of an automaton and that of the STS that repre-
sents it may mislead one to believe that an STS is just a reformulation of an automaton. To show,
conversely, that this model has a much greater modeling power we observe that an STS may also
represent an arbitrary time-driven system. In fact, the dynamics of any differential equation (not
necessarily linear and not necessarily scalar) or of any differential inclusion can be described by
an STS.

Remark 11.2 The differential inclusion ẋ(t) ∈ f(x(t)) with initial condition x0 = x(t0) ∈ Rn

can be represented by an STS T = (S,Σ,−→, S0) where:
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• S = Rn;

• Σ = Time is the set of values taken by the independent variable time (e.g., if t0 = 0 then
Time = R≥0);

• −→= {(x, t, x′) | x ∈ S, t ∈ Σ, x′ = ϕ(t, x) ∈ S}, where ϕ(t, x) denotes a solution at
time t of the differential inclusion, with initial condition x;

• S0 = {x0}. ⋄

The following two examples illustrate this concept.

Example 11.3 Consider a system whose dynamics is given by the scalar linear differential equa-
tion ẋ(t) = −x(t) with initial condition x(0) = x0 and let Time = R≥0. It is known that
the solution of this equation is x(t) = e−tx0. Thus we can describe such a system by a STS
T = (S,Σ,−→, S0) with:

• S = R; (infinite state space)

• Σ = Time; (infinite set of generators)

• −→= { (x, t, x′) | x ∈ S, t ∈ Time, x′ = e−tx },
• S0 = {x0}.

We can therefore write, say, 2 5−→ 0.0135 to denote that from state 2 in 5 units of time a new state
0.0135 is reached, since e−t · x0 = e−5 · 2 = 0.0135. ⋄

Example 11.4 The differential inclusion ẋ(t) ∈ [1, 2] with initial condition x(0) = 2 can be
represented by an STS T = (S,Σ,−→, S0) with:

• S = R;

• Σ = Time;

• −→= {(x, t, x′) | x ∈ S, t ∈ Σ, x′ ∈ [x+ t, x+ 2t]};

• S0 = {2}. ⋄

11.2.1 STS associated with a hybrid automaton

In the previous section we have seen how to describe either a DES or a TDS by an STS. This
shows that an STS is a very general model, which may also describe a hybrid system.

We discuss now how an arbitrary autonomous hybrid automaton may be described by an STS.
Note, however, that also a hybrid automaton with inputs may be described by a STS. In fact,
the effect of the continuous input can be abstracted by an autonomous model by converting its
activities in differential inclusions, as already seen in Example 9.3. Furthermore, the effect of
the discrete inputs may be abstracted in an autonomous model assuming that the occurrence of a
controlled transition is nondeterministic: if the continuous state belongs to the guard the transition
may occur (if its input condition is true) or not (if its input condition is false).
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Figure 11.2: Simplified hybrid automaton of the thermostat.

Definition 11.2 (STS of a hybrid automaton) Let H = (L,X,A, I, E) be an autonomous hy-
brid automaton with initial state y0 = (ℓ0, x0). We can describe it by a STS TH = (S,Σ,−→, S0)
defined as follows.

• The set of states is S = L×X .

• The set of generators is Σ = Time ∪ {d}.

• The relation −→ is defined as follows.

– (Continuous step) In each location ℓ state evolves according to the differential equa-
tion2 ẋ(t) = fℓ(x(t)). Thus, denoting by ϕℓ(t; x̄) the solution at time t of the differ-
ential equation that satisfies:

(a) the state at time t = 0 is x̄;
(b) the state evolution does not violates the invariant, i.e., ϕℓ(t

′, x) ∈ Iℓ for t′ ∈ [0, t];

we can write:
(ℓ, x)

t−→(ℓ, ϕℓ(t, x)).

– (Discrete step) If there is an edge e = (ℓ, ge, je, ℓ
′) ∈ E, x ∈ ge and (x, x′) ∈ je, from

location ℓ a discrete transition may occur updating the state according to

(ℓ, x)
d−→(ℓ′, x′).

We can finally write

−→ = { ((ℓ, x), t, (ℓ, x′)) | ℓ ∈ L, x ∈ X, t ∈ Time, x′ = ϕℓ(t, x) }
⋃

{ ((ℓ, x), d, (ℓ′, x′)) | ℓ ∈ L, e = (ℓ, ge, je, ℓ
′) ∈ E, x ∈ ge, (x, x

′) ∈ je }.

• The set of initial states is S0 = {y0}. ▲

Example 11.5 Consider the simplified hybrid automaton of the thermostat shown in Fig. 11.2: in
location ℓ1 (ON) the temperature x(t) increases according to ẋ(t) = 1 and in location ℓ2 (OFF)
the temperature decreases according to ẋ(t) = −2.

We can associate with this HA the following STS = TH(S,Σ,−→, S0).

2One could also consider the more general case in which the activity associated with each location is a differential
inclusion ẋ(t) ∈ fℓ(x(t)) . In this case, ϕℓ(t, x) is one of the possible solutions of the differential inclusion and the
transition relation is defined for all these solutions.
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• S = {ON,OFF} × R.

• Σ = Time ∪ {d}.

• −→ is defined as follows.

– (Continuous step)

(ON, x)
t−→(ON, x+ t) if x+ t ≤ 22,

(OFF, x)
t−→(OFF, x− 2t) if x− 2t ≥ 20.

– (Discrete step)

(ON, x)
d−→(OFF, x) if x ≥ 22,

(OFF, x)
d−→(ON, x) if x ≤ 20.

• S0 = {(ON, 15)}. ⋄

It is also possible to associate with a hybrid automaton a STS where time is abstracted, i.e., one
does specify the duration of a continuous step. This model is useful to study which states can be
reached starting from a given initial state without keeping track of how the state evolves over time.

Definition 11.3 (Time-abstract STS of a hybrid automaton) Let H = (L,X,A, I, E) be an
autonomous hybrid automaton with initial state y0 = (ℓ0, x0). We can describe it by a STS
THτ = (S,Σ,−→, S0) defined as follows.

• The set of states is S = L×X .

• The set of generators is Σ = {τ} ∪ {d}. The generator τ indicates a time step of indefinite
duration.

• The relation −→ is defined as follows:

– (Continuous step) If there exists t ∈ Time such that 3 x′ = ϕℓ(t, x) then

(ℓ, x)
τ−→(ℓ, x′).

– (Discrete step) If there exists an edge e = (ℓ, ge, je, ℓ
′), x ∈ ge and (x, x′) ∈ je then

(ℓ, x)
d−→(ℓ′, x′).

We can therefore write

=⇒ = { ((ℓ, x), τ(ℓ, x′)) | ℓ ∈ L, x ∈ X, (∃t ∈ Time) x′ = ϕ(t, x) } ⋃
{ ((ℓ, x), d(ℓ′, x′)) | ℓ ∈ L, e = (ℓ, ge, je, ℓ

′) ∈ E, X ∈ ge, (x, x
′) ∈ je }.

3Recall that ϕℓ is a solution that does not violate the invariant, i.e., ϕℓ(t
′, x) ∈ Iℓ for t′ ∈ [0, t].
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• The set of initial states is S0 = {y0}. ▲

Example 11.6 Consider again the simplified hybrid automaton of the thermostat. We can asso-
ciate with it the following time-abstract STS THτ = (S,Σ,−→, S0).

• S = {ON,OFF} × R.

• Σ = {τ} ∪ {d}.

• −→ is defined as follows.

– (Continuous step)

(ON, x)
τ−→(ON, x′) if x′ ∈ [x, 22]

(OFF, x)
τ−→(OFF, x′) if x′ ∈ [20, x].

– (Discrete step)

(ON, x)
d−→(OFF, x) if x ≥ 22,

(OFF, x)
d−→(ON, x) if x ≤ 20.

• S0 = {(ON, 15)}. ⋄

The above example shows how the time-abstract STS does not describe precisely the dynamics of
a hybrid automaton but keeps track only of the reachable states. In particular, consider a different
model of the thermostat where the activity in location ON is ẋ(t) = α (with α > 0,) and the
activity in location ℓ2 is ẋ(t) = −β (with β > 0,). The time-abstract STS of this new system
coincide with the one described in Example 11.6, because only the sign but not the exact value of
temperature rate of change is taken into account.

11.2.2 Reachability of a State Transition System

The evolution of a STS consists in a sequence of steps, corresponding to different generators, that
reach different states.

Example 11.7 The STS of the nondeterministic finite automaton discussed in Example 11.2 can
have the following evolution

x0
a−→x1

b−→x1
a−→x2

which corresponds to a production of the automaton that generates the word aba. Note that all
states of the automaton are reachable from the initial state in two steps or less, because the shortest
path leading from x0 to a generic state does not contains more than two steps. ⋄

Example 11.8 The time-abstract STS of the thermostat discussed in Example 11.6 may produce
the following evolution

(ON, 15)
τ−→(ON, 22)

d−→(OFF, 22)
τ−→(OFF, 20)
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alternating continuous and discrete steps.

Note that this is also a possible evolution of the system

(ON, 15)
τ−→(ON, 21)

τ−→(ON, 22)
d−→(OFF, 22)

τ−→(OFF, 20).

⋄

To better characterize the set of states that are reached with the different possible evolutions of a
STS, we introduce the following definition.

Definition 11.4 (Reflexive and transitive closure of the transition relation) Given a STS T =
(S,Σ,−→, S0) let s, s′ ∈ S be two arbitrary states. If there exist generators σ1, σ2, . . . , σk such
that

s
σ1−→ s1

σ2−→ s2
σ3−→· · · σk−→ sk = s′

with k ≥ 0, we say that s′ is reachable from s and write s =⇒ s′.

We can thus define the reflexive and transitive closure of the transition relation −→ as the new
relation =⇒⊆ S × S such that

=⇒= { (s, s′) | s′ is reachable from s }.

▲

The transition relation −→ specifies the reachability in 1 step, while the relation =⇒ generalizes
this and allows also to specify reachability in

• 0 steps (reflexive): s =⇒ s for every s ∈ S;

• 2 or more steps (transitive).

Note that the transition relation −→ usually requires 4 to specify the generator that determines the
transition while the relation =⇒ does not require that.

Definition 11.5 (Reachability set) The reachability set of a STS T = (S,Σ,−→, S0) is

Reach(T ) = {s ∈ S | (∃s0 ∈ S) s0 =⇒ s},

i.e., the set of states reachable from any initial state. ▲

The following recursive procedure allows one to compute the reachability set.

Procedure 11.1 (Computation of the reachability set).

INPUT: An STS T = (S,Σ,−→, S0).

OUTPUT: The set Reach(T ).

4With a slight abuse of notation, we may abstract the generator also in the transition relation and define s −→ s′ if
there exists σ ∈ Σ such that s σ−→ s. This notation is used in the procedure 11.1 described below.
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1. Reach−1 = ϕ, Reach0 := S0; R0 := S0, k := 0;

2. while Rk ̸⊆ Reachk−1,

(a) Rk+1 = {s′ ∈ S | (∃s ∈ Rk) s −→ s′};

(b) Reachk+1 := Reachk ∪Rk+1;

(c) k := k + 1;

end while

3. Reach(T ) := Reachk

In this procedure Reachk is the set of states reachable in a number of steps less than or equal to
k, while Rk indicates the states reachable in exactly k steps. Note that the set Reachk is non-
decreasing for increasing k and the process ends when Rk ⊆ Reachk−1, i.e., when Reachk =
Reachk−1.

The following example shows an example of application of this procedure.

Example 11.9 Consider a tank in which the outgoing flow is constant and equal to η = 1m3/s.
The tank is fed by a pump which, when in operation, produces an input flow equal to q = 2m3/s.
A control device sends a start command to the pump when the volume is less than or equal to
VA = 2m3, while it sends a stop command to the pump when the volume is greater than or equal
to VS = 5m3. However, the commands are executed with a delay equal to δ = 1s.

The hybrid automaton H which describes such a system is shown in Fig. 11.3 where the state
variable x1(t) shows the volume of the tank and x2(t) is the clock needed to model the delay of
the start/stop command. Locations ℓ1 and ℓ2 represent the case in which where the pump is off
but ℓ2 denotes the condition in which the start signal has been sent but has not yet been executed:
in these locations the variation of volume per unit time is equal to −η = −1. Locations ℓ3 and ℓ4
represent the case in which where the pump is on but ℓ4 denotes the condition in which the stop
signal has been sent but has not yet been executed: in these locations the variation of volume per
unit time is equal to q − η = 1. It is known that the initially volume of the tank is x1(0) ∈ [3, 4],
while the clock is set to a value x2(0) ∈ [1.5, 2], while initially the pump is turned off.

The time-abstract STS THτ = (S,Σ,−→, S0) which describes such a system has a set of states

S = {OFF, START,ON, STOP} × R2
≥0,

generators

Σ = {τ, d}

and set of initial states

S0 = { (OFF, (x1,0, x2,0)) | x1,0 ∈ [3, 4], x2,0 ∈ [1.5, 2] }.
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Figure 11.3: Hybrid automaton of the tank with delayed start/stop activation in Example 11.9.

The transition relation −→ is characterized by the following continuous steps:

τ1) (OFF, (x1, x2))
τ−→(OFF, (x′1, x2)) if x′1 ∈ [2, x1]

τ2) (START, (x1, x2))
τ−→(START, (x1 − t, x2 + t)) if t ≥ 0 and x2 + t ≤ 1

τ3) (ON, (x1, x2))
τ−→(ON, (x′1, x2)) if x′1 ∈ [x1, 5]

τ4) (STOP, (x1, x2))
τ−→(STOP, (x1 + t, x2 + t)) if t ≥ 0 and x2 + t ≤ 1.

and by the following discrete steps:

c1) (OFF, (x1, x2))
d−→(START, (x1, 0)) if x1 ≤ 2,

c2) (START, (x1, x2))
d−→(ON, (x1, x2)) if x2 ≥ 1,

c3) (ON, (x1, x2))
d−→(STOP, (x1, 0)) if x1 ≥ 5,

c4) (STOP, (x1, x2))
d−→(OFF, (x1, x2)) if x2 ≥ 1.

Let us now proceed to determine the reachability set applying procedure 11.1. The generic set Rk

(for k ≥ 0) is shown in Fig. 11.4, where a different color is associated with each discrete location
(compare with Fig. 11.3 for color legend).

• Initially we let R0 = S0. This set is represented by the small red rectangle with black border
in the figure.

• Applying generator τ1 from R0 one reaches R1 = {OFF, (x1, x2) | x1 ∈ [2, 4], x2 ∈
[1.5, 2]}. Note that in this case R1 ⊃ R0. In this figure this set is represented by the large
red rectangles that contains the small red rectangle with black border.
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Figure 11.4: Reachability analysis of the tank with delayed start/stop activation in Example 11.9.

• Applying generator c1 from R1 one reaches R2 = {START, (2, 0)}.

• Applying generator τ2 from R2 one reaches R3 = {START, (2− t, t) | 0 ≤ t ≤ 1}.

• Applying generator c2 from R3 one reaches R4 = {ON, (1, 1)}.

• Applying generator τ3 from R4 one reaches R5 = {ON, (x1, 1) | x1 ∈ [1, 5]}.

• Applying generator c3 from R5 one reaches R6 = {STOP, (5, 0)}.

• Applying generator τ4 from R6 one reaches R7 = {STOP, (5 + t, t) | 0 ≤ t ≤ 1}.

• Applying generator c4 from R7 one reaches R8 = {OFF, (6, 1)}.

• Applying generator τ1 from R8 one reaches R9 = {STOP, (x1, 1) | x1 ∈ [2, 6]}. The
segment in the figure representing such a set partially overlaps the segment that represents
the set R5; in the figure the two segments are drawn slightly separated to increase readability.

• Applying generator c1 from R9 one reaches R10 = {START, (2, 0)}, which coincides with
the set R2. Since R10 ⊂ Reach9 =

⋃9
k=0Rk and since Reach9 = Reach10 the procedure

ends.

• The reachability set is Reach(T ) = Reach10 . ⋄

In the previous example, the application of the procedure 11.1 has allowed us to determine the
reachability set in 10 steps. Note, however, that this procedure does not necessarily represent an
algorithm because when the reachability set is infinite it is not guaranteed to halt in a finite number
of steps.

Example 11.10 Consider an infinite capacity queue described by the infinite state automaton
shown in Fig. 11.5, where event a denotes the arrival of a customer in the queue, and event p
indicates the departure of a client.

We describe this system by the STS T = (S,Σ,−→, S0) with

S = N Σ = {a, p}, S0 = {0},
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Figure 11.5: Automaton of an infinite capacity queue.

and transition relation

−→= {(n, a, n+ 1) | n ≥ 0}
⋃

{(n, p, n− 1) | n ≥ 1}.

Applying the procedure 11.1 at the generic step k ∈ N holds

Rk = {0, 2, . . . , k} for k even,

Rk = {1, 3, . . . , k} for k odd,

and Reachk = {0, 1, . . . , k}. So to build Reach(T ) = N infinite steps are needed. ⋄

11.3 Equivalence between state transition systems

In this section, we discuss the conditions under which two different STS can be considered equiv-
alent, in the sense that they exhibit a similar behavior. The main interest behind this study is the
following: if we need to study some properties of a system, we may transform it first into an
equivalent but simpler systems, and then analyze the transformed one.

Several different notions of equivalence will be considered: language equivalence, bisimulation
and isomorphism.

11.3.1 Language equivalence

Definition 11.6 Given a state transition system T = (S,Σ,−→, S0, SF ), we define its generated
language as

L(T ) = {w = σ1σ2 · · ·σk ∈ Σ∗ | (∃s0 ∈ S0) s0
σ1−→ s1

σ2−→· · · σk−→ sk, k ≥ 0 },

i.e., the set of sequences of symbols in Σ that can be generated from an initial state, and its
accepted language as

LF (T ) = {w = σ1σ2 · · ·σk ∈ Σ∗ | (∃s0 ∈ S0) (∃sk ∈ SF ) s0
σ1−→ s1

σ2−→· · · σk−→ sk, k ≥ 0 },

i.e., the set of sequences of symbols in Σ that can be generated from an initial state and reach a
final state. ▲

In the previous definition, for completeness, we have considered the case of a STS with a set of
final states. When SF is not specified we will assume LF (T ) = ∅.
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Figure 11.6: Three automata.

Definition 11.7 (Language equivalence) Two STS T and T ′ are called language equivalent5 if
it holds L(T ) = L(T ′) and LF (T ) = LF (T

′), i.e., they generate and accept the same language.
▲

Example 11.11 Consider the three state transition systems T1, T2 and T3 represented by automata
in Fig. 12.1. The three systems are language equivalent because they generate the same language
L(T1) = L(T2) = L(T3) = {ε, a, b, ac, bc} and accept the same language LF (T1) = LF (T2) =
LF (T3) = {ab, ac}.

System T4 generates language L(T4) = {ε, a, aa, ab, ac} and accepts language LF (T4) = {aa, ab, ac}
and therefore is not equivalent to the first three. ⋄

Finally, note that language equivalence induces a relation between state transition systems ∼L,
where T ∼L T̂ if T and T̂ are equivalent for language. It is easy to show that this relation between
STS is an equivalence relation (cfr. § A.5).

11.3.2 Simulation and bisimulation

The previously defined language equivalence is related exclusively to the sequences of symbols in
Σ produced by an evolution. The following stronger notion also considers the state reached by an
evolution.

Definition 11.8 (Simulation) Let T = (S,Σ,−→, S0, SF ) and T̂ = (Ŝ,Σ, 99K, Ŝ0, ŜF ) be two
state transition systems 6.

A relation R ⊆ S × Ŝ that associates states of T with states of T̂ is called a simulation if the

5Sometimes they are just called equivalent for short.
6For sake of simplicity, we consider two STS with the same set of generators but these results are also valid in the

case of STS with different set of generators Σ and Σ̂ provided there exists an isomorphism between the two sets.
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following conditions hold:

(a) (s ∈ S0) −→ exists ŝ ∈ Ŝ0: (s, ŝ) ∈ R,

(b) (s ∈ SF ) ∧ (s, ŝ) ∈ R −→ ŝ ∈ ŜF ;

(c) (s
σ−→ s′) ∧ (s, ŝ) ∈ R −→ exists ŝ′ ∈ Ŝ: (ŝ

σ
99K ŝ′) ∧ (s′, ŝ′) ∈ R.

In this case we say that T̂ simulates T through R. ▲

According to condition (c) in the previous definition, if T̂ simulates T through R then given two
states (s, ŝ) ∈ R, for each evolution of T that starts at s and reaches a state s′, there exists a similar
evolution of T̂ start from ŝ and reaches a state ŝ′ associated with s′ through R. In other words, the
system T̂ from ŝ can simulate every evolution of T that starts from s.

Condition (a) implies that if a state s0 of T is an initial state, then there exists an initial state ŝ0
of T̂ associated with it: this means that every evolution of T that starts from s0 can be simulated
by an evolution of T̂ that starts from ŝ0. Condition (b), finally, implies that if a state of T is final,
then every state of T̂ associated with it is final: this means that every evolution of T that reaches
a final state can be simulated by an evolution of T̂ that also reaches a final state.

Example 11.12 Consider the STSs T1 and T2 in Fig. 11.6. T2 simulates T1 through the relation
R = {(x0, y0), (x1, y1), (x2, y1)(x3, y2), (x4, y3)}. Note however that the first system can not
simulate the second, since it is not possible to define a simulation relation from T2 a T1. In fact,
in state y1 of T2 generators b and c are both defined: this state can not be simulated by any state of
the first systems since in T1 there exist no state in which these two generators are simultaneously
defined. ⋄

Example 11.13 Consider the STSs T3 and T4 in Fig. 11.6. T4 simulates T3 through the relation
R = {(z0, w0), (z1, w1), (z2, w2)}. Note however that the first system can not simulate the latter,
because one cannot define a simulation relation from T4 to T3. In fact, state w1 of T4, from which
generators a, b and c are defined can not be simulated by any state of T3. ⋄

Definition 11.9 (Bisimulation) Let T = (S,Σ,−→, S0, SF ) and T̂ = (Ŝ,Σ, 99K, Ŝ0, ŜF ) be two
state transition systems.

A relation R ⊆ S × Ŝ that associates states of T with states of T̂ is called a bisimulation if T̂
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simulates T through R and T simulates T̂ through R−1, i.e., the following conditions hold:

(a′) (s ∈ S0) −→ exists ŝ ∈ Ŝ0: (s, ŝ) ∈ R,

(a′′) (ŝ ∈ Ŝ0) −→ exists s ∈ S0: (ŝ, s) ∈ R−1,

(b′) (s ∈ SF ) ∧ (s, ŝ) ∈ R −→ ŝ ∈ ŜF ;

(b′′) (ŝ ∈ ŜF ) ∧ (ŝ, s) ∈ R−1 −→ s ∈ SF ;

(c′) (s
σ−→ s′) ∧ (s, ŝ) ∈ R −→ exists ŝ′ ∈ Ŝ: (ŝ

σ
99K ŝ′) ∧ (s′, ŝ′) ∈ R,

(c′′) (ŝ
σ

99K ŝ′) ∧ (ŝ, s) ∈ R−1 −→ exists s′ ∈ S: (s
σ−→ s′) ∧ (ŝ′, s′) ∈ R−1.

In this case we say that T and T̂ are bisimilar through R. ▲

Example 11.14 Consider the state transition systems T2 and T3 in Fig. 11.6. The two systems are
bisimilar through bisimulation relation R = {(y0, z0), (y1, z1), (y2, z2), (y3, z2)}. ⋄

Example 11.15 Consider the state transition systems associated with the two SAT:

ẋ(t) = −x, with x(0) = x0 > 0,

and
ẏ(t) = 0, with y(0) = y0.

The two systems are bisimilar through the relation R = { (x, y0) | x ∈ [0, x0] } whose inverse
is R−1 = { (y0, x) | x ∈ [0, x0] }. In fact, in the first system from a state x ∈ [0, x0] at time t
state x′ = e−tx is reached, while in the second system from state y = y0 at time t state y′ = y0 is
reached and it holds (x′, y′) ∈ R and (y′, x′) ∈ R−1. ⋄

Finally, the following properties hold.

Proposition 11.1 Let T and T̂ be two state transition systems.

1. If T̂ simulates T then L(T ) ⊆ L(T̂ ) and LF (T ) ⊆ LF (T̂ ).

2. If T and T̂ are bisimilar then L(T ) = L(T̂ ) and LF (T ) = LF (T̂ ).

Proof: Assume that T̂ simulates T . From conditions (a) and (c) in Definition 11.8 it follows that
if sequence of generators w = σ1σ2 · · ·σk can be applied from an initial state of T , then the same
sequence can also be applied from some initial state of T̂ and this implies L(T ) ⊆ L(T̂ ). From
condition (b) in Definition 11.8 it also follows that if such a sequence w is accepted in T then it is
also accepted in T̂ , and this implies LF (T ) ⊆ LF (T̂ ). This proves statement 1) and statement 2)
is an obvious corollary of statement 1). □
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The second property shows, in particular, that bisimulation is stronger than language equivalence,
in the sense that if two STS are bisimilar then they are also language equivalent (but the converse
is not true).

Example 11.16 Consider the state transition systems in Fig. 11.6.

System T4 simulates T3 and it holds L(T3) ⊊ L(T4) and LF (T3) ⊊ LF (T4). In this particular
case both inclusions are strict.

Systems T2 and T3 are bisimilar and therefore they are also language equivalent .

Note that T1 and T2 are language equivalent but are not bisimilar: T2 simulates T1, but the converse
is not true. ⋄

Finally, note that the bisimulation induces a relation between state transition systems ∼B , where
T ∼B T̂ if T and T̂ are bisimilar. It is easy to show that this relation between STS is an equivalence
relation.

11.3.3 Isomorphism

The stronger relation between state transition systems that we consider is the following.

Definition 11.10 (Isomorphism) Let T = (S,Σ,−→, S0, SF ) and T̂ = (Ŝ,Σ, 99K, Ŝ0, ŜF ) be
two state transition systems.

The two STS are called isomorphic if they are bisimilar through the relation R ⊆ S × Ŝ and this
relation is an isomorphism, i.e., both R and R−1 are one-to-one functions. ▲

Example 11.17 None of the systems shown in Fig. 11.6 is isomorphic to another system in the
figure. In fact, two automata are isomorphic if and only if they are identical (except for a labeling
of states). So the isomorphism between automata is not particularly meaningful. ⋄

Example 11.18 The SATs described in Example 11.15 although bisimilar are not isomorphic, be-
cause the relation R defined between their states is not an isomorphism. In fact R−1 = { (y0, x) |
x ∈ [0, x0] } is not a one-to-one function.

Conversely, consider the state transition systems associated with the two SAT:

ẋ(t) = −1, with x(0) = x0 ̸= 0,

and
ẏ(t) = 2, with y(0) = y0 ̸= 0.

The two systems are isomorphic because they are bisimilar through the relation R = { (e−tx0, e
2ty0) |

t ≥ 0 } and this relation is an isomorphism. ⋄

Note that isomorphism induces a relation ∼I between state transition systems, where T ∼I T̂ if T
and T̂ are isomorphic. It is easy to show that this relation between STS is an equivalence relation.
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Finally, it is obvious from the definition of the isomorphism that this relation is stronger than
bisimulation. We can summarize the three relations between STS introduced in this section as
follows:

T ∼I T̂ =⇒ T ∼B T̂ =⇒ T ∼L T̂ .

11.4 Bisimulation between states of an STS

In this section we will see how it is possible to define an equivalence relation among the states of a
state transition system. This often allows to simplify the reachability analysis, by partitioning the
state space of an STS into equivalence classes.

11.4.1 Bisimulation among states

Definition 11.11 (Bisimulation among states) Let T = (S,Σ,−→, S0, SF ) be a state transition
system.

An equivalence relation ∼⊆ S × S among the states of T is called a bisimulation if the following
conditions hold:

(a) (s ∈ S0) ∧ (s ∼ ŝ) −→ (ŝ ∈ S0)

(b) (s ∈ SF ) ∧ (s ∼ ŝ) −→ (ŝ ∈ SF )

(c) (s
σ−→ s′) ∧ (s ∼ ŝ) −→ ∃ŝ′ ∈ S: (ŝ

σ−→ ŝ′) ∧ (s′ ∼ ŝ′).

▲

In the previous definition the first (resp., second) condition requires that if s is an initial (resp.,
final) state any other state ŝ related to it is also an initial (resp., final) stat. The third condition
requires that if from state s generator σ yields a state s′, then from any state ŝ related to s the same
generator yields a state ŝ′ related to s′. In such a case, any evolution that starts from state s can be
simulated by an evolution that starts from state ŝ and viceversa.

Example 11.19 Consider the STS of the infinite state automaton shown in Fig. 11.7 (the final
states are denoted by a double circle). The relation ∼ between states whose equivalence classes7

are Π∼ = {π1, π2, π3, π4} , where

π1 = {x1}, π2 = {xi, yj | i ≥ 2, j ≥ 1}, π3 = {si, zi | i ≥ 1}, π4 = {ui, vi, wi | i ≥ 1},

is a bisimulation.

It is obvious that conditions (a) and (b) of the previous definition hold, since S0 = {x1} = π1 and
SF = {ui, vi, wi, si, zi | i ≥ 1} = π3 ∪ π4.

7A bisimulation is an equivalence relation and thus, as discussed in § A.5, it induces a partition of state set S into
equivalence classes. Note that an equivalence relation is univocally specified by its equivalence classes.
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Figure 11.7: An automaton with infinite states.

In addition:

• from any state in π2: a yields a state in π2, b yields a state in π4, c yields a state in π3;

• from any state in π3: d yields a state in π4 ;

• from any state in π4 no evolution is possible.

In the figure states that belong to the same equivalence class are represented with the same color.
⋄

We now give a definition that will be useful in the following.

Definition 11.12 (Set of predecessors) Let T = (S,Σ,−→, S0, SF ) be a state transition system.

Given a subset of states S′ ⊆ S and a generator σ ∈ Σ, we define the set of σ-predecessors of S′

Preσ(S
′) = { s ∈ S | (exists s′ ∈ S′) s σ−→ s′ }

as the set of states from which it is possible to reach a state in S′ though the generator σ. ▲

Example 11.20 Consider the automaton discussed in Example 11.19 and let S′ = {ui, si | i ≥
1}. It holds

Prea(S
′) = Pred(S

′) = ∅, P reb(S
′) = Prec(S

′) = {xi | i ≥ 1}.

⋄

The following proposition provides a fundamental characterization of a bisimulation relation.

Proposition 11.2 Let T = (S,Σ,−→, S0, SF ) be a state transition system. An equivalence rela-
tion ∼⊆ S × S is a is bisimulation if and only if all following conditions holds:

(a) Set S0 is the union of equivalence classes of ∼;

(b) Set SF is the union of equivalence classes of ∼;
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(c) For each equivalence class π ∈ Π∼ and for every σ ∈ Σ, the set Preσ(π) is the union of
equivalence classes of ∼.

Proof: One can immediately verify that the three conditions (a), (b) and (c) in the statement of the
proposition are equivalent to the three conditions (a), (b) and (c) in Definition 11.11. □

Note that in the previous proposition the union of equivalence classes may also be the empty set
(union of zero classes).

Example 11.21 Consider the automaton discussed in Example 11.19.

Conditions (a) and (b) of the previous proposition are immediately verified because

S0 = {x1} = π1, SF = {ui, vi, wi, si, zi | i ≥ 1} = π3 ∪ π4.

It is easy to check that the conditions (c) are met. In fact, the following applies:

Prea(π1) = Preb(π1) = Prec(π1) = Pred(π1) = ∅,
P rea(π2) = {xi, yi | i ≥ 1} = π1 ∪ π2, P reb(π2) = Prec(π2) = Pred(π2) = ∅;
Prea( pi3) = Preb(π3) = Pred(π3) = ∅, P rec(π3) = {xi, yi | i ≥ 1} = π1 ∪ π2;

Prea(π4) = Prec(π4) = ∅, P reb(π4) = {xi, yi | i ≥ 1} = π1 ∪ π2, P red(π4) = {si, zi | i ≥ 1} = π3.

Finally, note that the set of predecessors of an arbitrary subset S′ ⊆ S is not necessarily the union
of equivalence classes. For example, for set S′ = {ui, si | i ≥ 1} considered in Example 11.20
holds Preb(S

′) = {xi | i ≥ 1}, and this set contains the class π1 and some states (but not all)
belonging to the class π2. ⋄

11.4.2 Computing a bisimulation

Given an STS there may exist more than one bisimulation on its states. For example, the identity
relation R = {(s, s) | s ∈ S} is always a bisimulation: unfortunately this relation contains as
many equivalence classes as the states of the STS, and is not particularly significant.

We consider the problem of computing a minimal bisimulation, i.e., a bisimulation with a min-
imum number of equivalence classes. The following procedure allows one to determine such a
bisimulation if it halts. Termination is guaranteed if the STS to which it is applied has a finite state
space (sufficient but not necessary).

Procedure 11.2 (Calculation of a minimal bisimulation).

INPUT: An STS T = (S,Σ,−→, S0).

OUTPUT: The partition Π∼ a minimal bisimulation.

1. Π = ∅;
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2. if S0 \ SF ̸= ∅ then Π = Π ∪ {S0 \ SF };

3. if SF \ S0 ̸= ∅ then Π = Π ∪ {SF \ S0};

4. if S0 ∩ SF ̸= ∅ then Π = Π ∪ {S0 ∩ SF };

5. if S \ (S0 ∪ SF ) ̸= ∅ then Π = Π ∪ {S \ (S0 ∪ SF )};

6. while (∃ π, π′ ∈ Π) (∃σ ∈ Σ) ∅ ⊊ π ∩ Preσ(π
′) ⊊ π,

(a) π̄ = π ∩ Preσ(π
′);

(b) Π = Π ∪ {π̄, π \ π̄} \ {π};

end while

7. Π∼ := Π.

Initially, the procedure identifies four subsets that certainly belong to different equivalence classes:
the states that are initial but not final, the states that are final but not initial, the states that are both
initial and final states, and the states that are neither initial nor final states. Then it considers a
set π that violates condition (c) in Definition 11.11 because it contains both: (i) states that are
σ-predecessors of another set π′ (there are the states π̄ = π ∩ Preσ(π

′)); (ii) states that are not
σ-predecessors of π′ (the are the states π \ π̄). In such a case the procedure partitions π in the two
subsets π̄ and π \ π̄, to remove the violation of condition (c). Note that in the cycle while sets π
and π′ may be the same.

Example 11.22 Consider the automaton studied in Example 11.19. Using Procedure 11.2 in the
first steps we set: Π = {π1, π2, π3,4}, where π1 = {x1}, π2 = {xi, yj | i ≥ 2, j ≥ 1} and
π3,4 = {ui, vi, wi, si, zi | i ≥ 1}.

Assume we chose π = π′ = π3,4 and σ = d. It holds Pred(π
′) = {si, zi | i ≥ 1}, thus

π̄ = π ∩ Preσ(π
′) = {si, zi | i ≥ 1} = π3 and π \ π̄ = {ui, vi, wi | i ≥ 1} = π4. We must now

split cell π3,4 in the two subsets π3 and π4 and so Π = {π1, π2, π3, π4}.

At this point, the loop condition while can not be satisfied by any choice of π, π′ and σ and the
procedure ends. The partition obtained coincides with that given in Example 11.19: we can now
claim that the corresponding bisimulation is minimal. ⋄

Finally, let us explain in qualitative terms why the presented procedure determines a minimal
bisimulation when it ends. As already stated the partition Π determined in steps 1-5 certainly
contains classes that can never be belong to the class equivalence class without violating conditions
(a) and (b) of Definition 11.11. During the while loop, the procedure considers a set π which
violates condition (c) of Definition 11.11 and determines the partition of minimum cardinality
(only two classes) of this set to remove the violation. Since at each step only partitions of minimum
cardinality are produced, the procedure determines a minimal bisimulation.

11.4.3 Quotient system

We now discuss how a bisimulation among the states of an STS may simplify the reachability
analysis. In fact, such a relation allows one to convert a state reachability problem into a problem
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of reachability among equivalence classes. The number of equivalence classes is generally less
than the number of states and in some cases, as in the case of Example 11.19, one has a finite
number of equivalence classes even if the states of the STS are infinite, which makes the problem
of reachability simpler.

To formalize this concept, we introduce the notion of quotient STS.

Definition 11.13 (Quotient STS ) Let T = (S,Σ,−→, S0, SF ) be a state transition system and
let ∼⊆ S × S be a bisimulation. The quotient of T by ∼ is the new STS:

T/∼ = (S/∼,Σ,−→, S0/∼, SF /∼)

defined as follows.

• The set of states S/∼ = Π∼ coincides with the equivalence classes of ∼.

• The set of initial states S0/∼ = {π ∈ S/∼ | π ⊂ S0} consists of the equivalence classes
that contain initial states of T .

• The set of final states SF /∼ = {π ∈ S/∼ | π ⊂ SF } consists of the equivalence classes
that contain final states of T .

• The transition relation −→ is defined as follows: for every π, π′ ∈ S/∼ and for every σ ∈ Σ
it holds

π
σ−→π′ if π ⊆ Preσ(π

′).

▲

Example 11.23 Consider the automaton discussed in Example 11.19. The quotient of this STS
by the relation ∼ we have previously considered is

T/∼ = (S/∼,Σ,−→, S0/∼, SF /∼)

with

• set of states S/∼ = Π∼ = {π1, π2, π2, π3},

• set of initial states S0/∼ = {π1};

• set of final states SF /∼ = {π3, π4};

• transition relation

−→= { (π1, a, π2), (π1, b, π4), (π1, c, π3), (π2, a, π2), (π2, b, π4), (π2, c, π3), (π3, d, π4) }.

The quotient STS can be represented by the automaton in Fig. 11.8. ⋄
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Figure 11.8: Quotient system of the automaton in Fig. 11.7.

11.4.4 Reachability analysis using the quotient STS

We now clarify what type of reachability problems for a given STS can be answered by means of
its quotient system.

Case 1

Suppose that in the quotient system class π′ is reachable from class π by generator σ, i.e., the
following condition holds:

π
σ−→ π′. (11.1)

Then, one can conclude that in the original system from every state in class π it is possible to
reach a state in class π′ by generator σ, i.e.,

(∀s ∈ π) (∃s′ ∈ π′) s σ−→ s′. (11.2)

However, that condition (11.1) does not imply that in the original system:

• from every state in π it is possible to reach any other state in π by generator σ, i.e.,

(∀s ∈ π) (∀s′ ∈ π′) s σ−→ s′; (11.3)

• every state π′ is reachable by generator σ from at least one state in π, i.e.,

(∀s′ ∈ π′) (∃s ∈ π) s
σ−→ s′. (11.4)

Example 11.24 Consider the automaton in Fig. 11.7 whose quotient is shown in Fig. 11.8. In the
quotient automaton class π4 is reached from the class π2 by b. Thus from every state in π2 at least
one state in π4 is reached by b: for example, from every state yi state wi is reached, while from
every state xi (i > 1) state wi is reached, as can be seen from Fig. 11.7.

However, from a state yi ∈ π2 generator b does not yield a state ui ∈ π4. In addition, a state
vi ∈ π4 can not be reached from any state in π2 by b. ⋄

It is finally possible to define a stronger relation, called time-symmetric simulation which guar-
antees that if condition (11.1) holds then in the original system condition (11.4) also holds, i.e.,
every state in π′ is reachable from at least one state in π by σ.
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Case 2

Suppose that in the quotient system class π′ is not reachable from class π by generator σ, i.e., the
following condition holds:

¬π σ−→ π′. (11.5)

Then, one can conclude that in the original system from no state in class π it is possible to reach
a state in class π′ by generator σ, i.e.,

(̸ ∃(s, s′) ∈ π × π′) s σ−→ s′. (11.6)

Example 11.25 Consider the automaton in Fig. 11.7 whose quotient is shown in Fig. 11.8. In the
quotient automaton class π3 can not be reached from class πi by generator a. This ensures that in
the original system from any state in π1 it is not possible to reach a state in π3 by generator a. ⋄

Finally, suppose that in the quotient system one cannot reach from class π class π′′ in any number
of steps, i.e., the following condition holds:

¬π =⇒ π′. (11.7)

Then, one can conclude that in the original system from no state in class π it is possible to reach
a state in class π′ in any number of steps i.e.,

(̸ ∃(s, s′) ∈ π × π′) s =⇒ s′. (11.8)

Example 11.26 Consider the automaton in Fig. 11.7 whose quotient is shown in Fig. 11.8. In the
quotient automaton class π3 can not be reached from class π4. This ensures that in the original
system from any state in π4 is not possible to reach a state in π3. ⋄



Chapter 12

Rectangular automata and timed
automata

In this chapter we show how the bisimulation techniques discussed in the previous chapter can
be applied to study the reachability of particular classes of hybrid automata. First we introduce a
hierarchy, from the most general class of rectangular automata to the most restricted class of timed
automata. Then we introduce a particular bisimulation on the continuous state space of a timed
automaton and show that this relation has always a finite number of equivalence classes called
regions: thus reachability problems for this class of models can be solved studying a finite quotient
system called region graph. Finally we show that under some structural conditions (namely the
reset of some continuous state variables at the occurrence of a discrete event) more general classes
of automata, including rectangular ones, can be simulated by timed automata.

12.1 Rectangular automata and other classes

Definition 12.1 A rectangle in Rn is a set

R =

n∏
i=1

ri = r1 × r2 × · · · × rn

where each 1-dimensional set ri = [li, ui], for i = 1, . . . , n, is a segment with lower bound
li ∈ {−∞}∪Z and upper bound ui ∈ Z∪{∞}. A 1-dimensional set can also be an open segment
[li, ui), or (li, ui] or (li, ui).

The set of all rectangles in Rn is denoted Rectn. ▲

It is important to stress that by definition the finite end points of all 1-dimensional intervals that
define a rectangle are integers.

Example 12.1 The following sets are rectangles in R2 and are shown in Fig. 12.1.

R1 = {(x1, x2) | 1 < x1 ≤ 3, 1 ≤ x2 ≤ 2},

167
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Figure 12.1: Examples of rectangles in R2.

R2 = {(x1, x2) | 1 ≤ x1 ≤ 2, x2 = −1},
R3 = {(x1, x2) | −3 ≤ x1 ≤ −1, x2 ≥ 1},

R4 = {(x1, x2) | x1 = x2 = 3}.

Definition 12.2 (Rectangular automaton) An n-dimensional rectangular automaton is an au-
tonomous hybrid automaton H = (L,X,A, I, E, y0) where the following conditions apply.

• The continuous state space is X = Rn.

• For each location ℓ ∈ L:

– the activity is a rectangular differential inclusion, i.e., it takes the form

ẋ(t) ∈ fℓ with fℓ ∈ Rectn;

– the invariant is a rectangle, i.e., Iℓ ∈ Rectn.

• For each edge e = (ℓ, ge, je, ℓ
′) ∈ E:

– the guard is a rectangle, i.e., ge ∈ Rectn;

– the jump function is the cartesian product of 1-dimensional rectangles or identity func-
tions, i.e., je = je,1 × je,2 × · · · × je,n where je,i ∈ Rect1 or je,i = id. If je,i ̸= id we
say that state xi is reset by the transition associated with the edge.

• The set of initial states is a (finite) union of set

Y0 = Y1 ∪ · · · ∪ Yk

where Yi ∈ L×Rectn for i = 1, . . . , k. ▲

Note that in a rectangular automaton the differential inclusion associated with each location ℓ does
not depend on the continuous state, i.e., the rectangle fℓ is not a function of x. Similarly, the jump
function of each edge e does not depend on the continuous state, i.e., je is not a function of x.
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Figure 12.2: A rectangular automaton.

Example 12.2 The hybrid automaton in Fig. 12.2 is a rectangular automaton of dimension 2.

The first location has activity

f1 =


 f ′

1

f ′′
1

 ∣∣∣∣∣∣ f ′
1 ∈ [−2, 3], f ′′

2 = 1

 .

In this particular case the differential inclusion of x2 is reduced to a simple differential equation.

In the graphical representation, the invariant in location ℓ2 is omitted because it holds I2 = R2

(this is a rectangle that covers the entire plane).

Edge e1 has guard g1 = (−∞, 2]× (3,+∞) and for sake of simplicity in the graphical representa-
tion this is written as x1 ≤ 2? and x2 > 3?. Also, the jump function of this edge is j1 = [1, 2]×id:
in the graphical representation the identity function is omitted, as usual.

The set of initial states is y0 = { (ℓ1, (x1, x2)) | x1 = 2, x2 ∈ [1, 2] }. ⋄

Definition 12.3 (Multirate automata) A n-dimensional multirate automaton is an n-dimensional
rectangular automaton in which the activity of each location ℓ ∈ L is a rectangle that contains a
single point, i.e., it is a differential equation

ẋ(t) = fℓ with fℓ ∈ Zn.

▲

The name multirate shows that in each location the derivative (rate) of all components of the
continuous state is a constant, although this rate may take different values for different components
and may vary from location to location.

Example 12.3 The hybrid automaton in Fig. 12.3 is a multirate automaton of dimension 2. ⋄

Definition 12.4 (Timed Automaton) An n-dimensional timed automaton is an n-dimensional
multirate automaton in which the activity of each location ℓ ∈ L is the differential equation

ẋ(t) = 1⃗,

i.e., ẋi(t) = 1 for all i = 1, . . . , n. ▲
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Figure 12.3: A multirate automaton.
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Figure 12.4: A timed automaton.

The name timed shows that in all locations the derivative (rate) of all components of the continuous
state is 1, i.e., each state variable xi is a clock.

Example 12.4 The hybrid automaton in Fig. 12.4 is a timed automaton of dimension 2. ⋄

Finally, we also mention two other interesting classes of hybrid automata.

Definition 12.5 (Stopwatch automaton) An n-dimensional stopwatch automaton is an n-dimensional
multirate automaton in which the activity of each location ℓ ∈ L is the differential equation

ẋ(t) = fℓ with fℓ = {0, 1}n,

i.e., ẋi(t) = 1 or ẋi(t) = 0 per each component i = 1, . . . , n. ▲

The name stopwatch denotes that each component of the continuous state is a timer, i.e., a clock
that can be stopped (derivative 0) or running (derivative 1).

Example 12.5 The hybrid automaton in Fig. 12.5 is a stopwatch automaton of dimension 2. ⋄

Definition 12.6 (Skewed clock automaton) An n-dimensional skewed clock automaton is an n-
dimensional multirate automaton in which all locations have identical activity, described by the
differential equation

ẋ(t) = f with f = Zn.
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Figure 12.5: A stopwatch automaton.
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Figure 12.6: A skewed clock automaton.

▲

The name skewed clock shows that each component of the continuous state is a clock, but each
clock may grows at different rate.

Example 12.6 The hybrid automaton in Fig. 12.6 is a skewed clock automaton of dimension 2
where ẋ1(t) = 2 and ẋ2(t) = 3. ⋄

The relationship among these classes of hybrid automata is summarized by the Venn diagram in
Fig. 12.7.

Timed 

Skewed 

clock 

Stopwatch 

Rectangular 

Multirate 

Figure 12.7: Relationship among several classes of hybrid automata.
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12.2 Timed automata and regions

The classes of hybrid automata defined in the previous section have an infinite state space, due
to the continuous component of the state vector. In this case, as already seen, the problem of
reachability may not be decidable. The fundamental result that we present in this section is the
following: it is possible to define, among the continuous states of a timed automaton, a finite
bisimulation (i.e., a bisimulation with a finite number of equivalence classes). This ensures that it
is possible to construct an quotient automaton with a finite number of states, for which the problem
of reachability is certainly decidable. This result is due to Alur and Dill [9] who first defined the
class of timed automata and studied their properties (this class of automata is also often called
Alur-Dill automata).

For sake of simplicity, in the following we will consider timed automata that satisfy these condi-
tions.

• In each location the invariant coincides with the continuous state space, i.e., Iℓ = X for
every ℓ ∈ L.

• The rectangles that define jumps and initial states are non-negative, that is, they are subsets
of Rn

≥0. This ensures that the continuous space satisfies X ⊂ Rn
≥0.

The results presented here, however, apply in the general case.

12.2.1 Equivalence relation among continuous states

Given a real number x ∈ R we denote ⌊x⌋ ∈ Z its integer part and ⟨x⟩ ∈ [0, 1) its fractional
part. For example, for x = 2.74 it holds ⌊x⌋ = 2 and ⟨x⟩ = 0.74, while for x′ = −1.6 it holds
⌊x′⌋ = −2 and ⟨x′⟩ = 0.4.

Furthermore, given a hybrid automaton for each state variable xi we define Mi the largest integer
that appears in the guards or jumps functions associated with that variable. For example, for the
timed automaton in Fig. 12.4 it holds M1 = 1 and M2 = 2.

Definition 12.7 Consider the equivalence relation ≈⊂ X ×X between the continuous states of a
timed automaton defined as follows. Given two states x = (x1, . . . , xn) and x′ = (x′1, . . . , x

′
n),

we write x ≈ x′ if the following conditions are met:

(a) (∀i) ⌊xi⌋ = ⌊x′i⌋ or (⌊xi⌋ ≥ Mi) ∧ (⌊x′i⌋ ≥ Mi)

(b) (∀i such that xi ≤ Mi) ⟨xi⟩ = 0 ⇐⇒ ⟨x′i⟩ = 0;

(c) (∀i, j such that xi ≤ Mi, xj ≤ Mj) ⟨xi⟩ ≤ ⟨xj⟩ ⇐⇒ ⟨x′i⟩ ≤ ⟨x′j⟩.

The equivalence classes of this relation are called regions of the state space X . ▲

According to this relation, two vectors x, x′ ∈ X are equivalent if: (a) all pairs of corresponding
components xi and x′i either are both larger than or equal to Mi or they have the same integer part.
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Figure 12.8: (a) Regions of timed automaton in Fig. 12.4, (b) two examples of temporal evolution.

In addition the components that are smaller than or equal to Mi must also satisfy two additional
conditions: (b) if the fractional part of a component xi is zero, then also the corresponding com-
ponent x′i is zero; (c) the ordering between the fractional parts of the components of x must be
identical to that of the components of x′.

Example 12.7 Consider the timed automaton in Fig. 12.4 with X = R2
≥0 where M1 = 1 and

M2 = 2. The equivalence classes of the relation ≈⊆ X × X previously defined are shown in
Fig. 12.8 (a). In total there are 28 regions of different form.

• There are 6 points p1 − p6 in blue.

p1 = {(0, 0)}, p2 = {(1, 0)}, etc.

• There are 14 open segments s1 − s14 in red: 6 horizontal ones (three of which unbounded),
6 vertical ones (two of which unbounded) and 2 diagonal ones.

s1 = {(x1, 0) | 0 < x1 < 1}, s2 = {(x1, 0) | x1 > 1}, etc.

• There are 4 open triangles t1 − t4 in yellow.

t1 = {(x1, x2) | 0 < x1, x2 < 1, ⟨x2⟩ < ⟨x1⟩}, t2 = {(x1, x2) | 0 < x1, x2 < 1, ⟨x1⟩ < ⟨x2⟩}, etc.

• There are 4 open unbounded rectangles r1 − r4 in yellow.

r1 = {(x1, x2) | x1 > 1, 0 < x2 < 1}, r2 = {(x1, x2) | x1 > 1, 1 < x2 < 2}; etc.

⋄
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Proposition 12.1 The equivalence relation ≈⊆ X ×X (with X ⊆ Rn) given in Definition 12.7
has a finite number of equivalence classes whose number is less than or equal to

NX =

(
n∏

i=1

(Mi + 1)

)
n! 2n. (12.1)

Proof : If only condition (a) on the integer parts of the components were considered, the state
space X would be partitioned in

∏n
i=1(Mi + 1) regions 1.

Adding conditions (b) and (c) requires considering the possible orderings of fractional parts

0 ≤ ⟨xj1⟩ ≤ ⟨xj2⟩ · · · ≤ ⟨xjn⟩.
There exists n! possible ordered sequences and for each sequence, choosing < or = in the n
inequalities, we have 2n possibilities: this explains how the combinatorial expression for NX has
been derived.

However, note that some of these combinations are repeated, such as

0 = ⟨x1⟩ = ⟨x2⟩ · · · and 0 = ⟨x2⟩ = ⟨x1⟩ · · ·
In addition for components greater that Mi the fractionary parts need not be ordered. Hence, NX

is just an upper bound on the number of regions. □

Example 12.8 Consider the timed automaton in Fig. 12.4. For this automaton is M1 = 1 and
M2 = 2, n = 2. According to eq. (12.1) holds:

NX = (2× 3) · 2! · 22 = 48.

However, as discussed in Example 12.7 the regions are only 28 < NX . ⋄

12.2.2 Equivalence relation between hybrid states

We now associate with a timed automaton a time-abstract state transition system.

Definition 12.8 (STS of a timed automaton) Let H = (L,X,E, y0) be an n-dimensional timed
automaton2. We associate with it a STS THτ = (S,Σ,−→, S0) defined as follows.

• The set of states is S = L×X .

• The set of generators is Σ = {τ} ∪ {d}.

• The transition relation is defined as follows:

−→ = { ((ℓ, x), τ, (ℓ, x′)) | ℓ ∈ L, x ∈ X, (∃t ≥ 0) x′i = xi + t for i = 1, . . . , n } ⋃
{ ((ℓ, x), d, (ℓ′, x′)) | ℓ ∈ L, e = (ℓ, ge, je, ℓ

′) ∈ E, x ∈ ge, x
′ ∈ je }.

1In the example these are the four rectangles r1 − r4 and the two unit squares (each consisting of two triangles) in
Fig. 12.8.

2In the definition of the timed automaton we need not specify the activity function (since in each location it holds
ẋ(t) = 1⃗,) and the invariants (they coincide with the continuous space state).
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• The set of initial states is S0 = {y0}. ▲

We remark that during a continuous step all components xi increase a with unitary slope moving
along ”diagonal” straight lines in the continuous state space.

Example 12.9 Consider the timed automaton in Fig. 12.4 whose regions are shown in Fig. 12.8 (a).

Consider a hybrid state (ℓ, xA) where the continuous state xA belongs to the region s1 as shown
in Fig. 12.8 (b). From this state, a continuous step leads to states (ℓ, x) where x belongs to the
diagonal half-line that starts at xA also shown in the figure. Note that starting from xA (and, in
general, from any other point in region s1) the time-driven evolution reaches continuous states
belonging to regions t1, s8, r1, s4, r2, s6, r3.

Similarly, from a hybrid state (ℓ, xb) (see figure) with xB ∈ s7 a continuous step leads to states
(ℓ, x) where x belongs to the diagonal half-line that starts at xB shown in the figure, reaching
regions t2, s3, t3, s10, r2, s6, r3. ⋄

We now extend to the hybrid state space S = L×X of the STS the relation ≈ previously defined
only on the continuous state space X .

Proposition 12.2 Consider the equivalence relation 3 ≈⊆ S × S among the states of the STS
associated with a timed automaton defined as follows: given two states (ℓ, x) and (ℓ′, x′), it holds

(ℓ, x) ≈ (ℓ′, x′) if ℓ = ℓ′ and x ≈ x′.

This relation is a finite bisimulation4 on S with a number of equivalence classes upper bounded
by

NS = |L| ·NX = |L| ·
(

n∏
i=1

(Mi + 1)

)
· n! · 2n.

Proof : The equivalence classes of this relation are of the form {ℓ} × π where ℓ ∈ L and π is a
region of X . The number of locations is obviously finite and equal to |L|. The number of regions
of X is bounded by NX given in Proposition 12.1. It follows that the number of regions is finite
and bounded by NS = |L| ·NX .

To demonstrate that this relation is a bisimulation, we will demonstrate in an informal way that
conditions (a) and (c) of Proposition 11.2 holds. We need not consider condition (b) since no set
of final states has been defined.

First we observe that the set of initial states Y0 is a union of sets in L× Rectn. Since a rectangle
is the union of regions of X , Y0 is the union of equivalence classes of S.

3One should use two different symbols to denote the relation on the continuous state space and that on the hybrid
state space of the STS. For sake of simplicity, however, we prefer to use the same symbol: it will be clear from the
context which relation we refer to.

4Note that it is possible to prove an even stronger result, namely, that this relation is a time-symmetric bisimulation
(see Section 11.4.4). This is due to the particular choice of jump relations, which are the cartesian product of 1-
dimensional rectangles or id functions.
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Let us now consider the set of predecessors Preτ ({ℓ}×π) of a class {ℓ}×π through the generator
τ (continuous step). This set consists of all those states (ℓ, x) from which a state in π is reachable.
For example, on the basis of the above considerations in Example 12.9 for the region s4 holds:

Preτ ({ℓ}×s4) = ({ℓ}×s1) ∪ ({ℓ}×t1) ∪ ({ℓ}×s8) ∪ ({ℓ}×P2) ∪ ({ℓ}×s2) ∪ ({ℓ}×r1).

One can verify that this set is always, as in the above mentioned example, the union of equivalence
classes of S.

Finally, we consider the set of predecessors Pred({ℓ′} × π′) of a class {ℓ′} × π′ through the
generator d (discrete step). This set contains all states (ℓ, x) such that there is an edge e =
(ℓ, ge, je, ℓ

′) with je∪π′ ̸= ∅ and is x ∈ ge. Since the guards are rectangles (i.e., union of regions)
one can easily verify that this set is always the union of equivalence classes of S. □

The previous proposition implies that it is always possible to compute a finite quotient system for
the STS THτ that describes a given timed automaton. The number of states of the quotient system
is upper bounded by NS and this number can be large.

Example 12.10 Consider the timed automaton in Fig. 12.4 and previously discussed in Exam-
ple 12.8. For this automaton |L| = 2 and it holds:

NS = |L| ·NX = 2 · (2× 3) · 2! · 22 = 96.

However, the actual number of equivalence classes is |L| · 28 = 56 < NS . ⋄

12.2.3 Region graph

Finally, we conclude with an example that shows how to construct the quotient of THτ by the
relation ≈: the quotient system is called region graph. It is a finite state transition system where
each state is an equivalence class of ≈ and with two discrete generators τ and d: hence in practice
it is a finite automaton.

Example 12.11 Consider the timed automaton in Fig. 12.9 (a). For this automaton it holds M1 =
M2 = 1 and the corresponding 18 regions in R2

≥0 are shown in Fig. 12.9 (b).

The initial state of the automaton is (ℓ1, (1, 0)): therefore the initial state the quotient system is
class π0 that contains this single state as shown in Fig. 12.9 (c).

From a state in π0 no discrete step is possible, since x2 ̸> 1. The time evolution leads to a state in

π1 = {(ℓ1, (x1, x2)) | x1 > 1, 0 < x2 < 1}.

From a state in π1 no discrete step is possible, since x2 ̸> 1 and the temporal evolution eventually
leads to a state in

π2 = {(ℓ1, (x1, xa)) | x1 > 1}.

Note that π1 is a region composed of interior points 5. This implies that starting from a state in
this region there are time-driven evolutions (for a length of time t sufficiently small) that remain
in it. This is denoted by the self-loop labeled τ .

5In other words, for each point of this region there exists a neighborhood contained in the same region.
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Figure 12.9: (a) A timed automaton, (b) regions in X , (c) the quotient system.

Continuing the construction, we obtain the region graph in Fig. 12.9 (c). Note that this graph
contains only nine states, while the number of equivalence classes is equal to 2 × 18 = 36. The
particular initial state is such that not all the equivalence classes are reachable and thus they do no
appear in the graph. ⋄

12.3 Reduction to timed automata

In the previous section we have seen how to define an equivalence relation on the continuous states
of a timed automaton that leads to a finite bisimulation on the state space of the corresponding
time-abstract state transition system. We now discuss if a similar result also holds for the other
classes of automata previously defined in Section 12.1.

It has been shown that in general it is not possible to define finite bisimulations for any of the
other classes of automata defined in Section 12.1 with the exception of the skewed-clock automata
[16, 20]. Hence for these classes the reachability problem is in general undecidable.

However, it is possible to define a particular subclass of rectangular or multirate automata, called
initialized for which the reachability problem becomes decidable. To prove this, we show that:

(a) a rectangular automaton can always be transformed into a multirate automaton and, further-
more, if the rectangular automaton is initialized then the equivalent multirate automaton is
initialized as well;
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(b) an initialized multirate automaton can be transformed into a timed automaton.

The interesting property of these transformations is that the reachability problem for the original
model can be framed into a reachability problem for the transformed one, and can thus be solved
using the region graph of the resulting timed automaton. This procedure is an example of what
in computational complexity theory is called a reduction, i.e., an algorithm for transforming one
problem into another problem.

The results presented in this section apply to arbitrary initialized rectangular and multirate au-
tomata. To simplify the notation, however, we restrict ourselves to automata that satisfy the fol-
lowing conditions.

• In each location the invariant coincides with the continuous state space, i.e., Iℓ = X for
every ℓ ∈ L.

• The activities are closed rectangles whose components [a, b] are bounded.

• The guards are closed rectangles whose components are either bounded [a, b] or unbounded
(−∞, b] , [a,+∞).

• Each component of a jump function that is different from the identity function is a bounded
closed set [a, b].

12.3.1 Initialized automata

Definition 12.9 (Initialized automata) A rectangular (or multirate) automaton is called initial-
ized if for all edges e = (ℓ, ge, je, ℓ

′) and for all components xi holds: je,i ̸= id if the differential
inclusion ẋi(t) ∈ fℓ is different from the differential inclusion ẋi(t) ∈ fℓ′ . ▲

In other words, in an initialized automaton each time that the differential inclusion for component
xi changes during an evolution, then value of xi is reset and does not depend on the previous
history.

Example 12.12 The rectangular automaton in Fig. 12.2 is not initialized. In fact, consider edge e1
from location ℓ1 to location ℓ2. The execution of this transition changes the differential inclusion
of component x2 from ẋ2(t) = 1 to ẋ2(t) ∈ [1, 2]. However the component x2 is not initialized,
because j1,2 = id.

The multirate automaton in Fig. 12.3 is initialized. The differential equation for component x1
changes passing from ℓ1 to ℓ2, but edge e1 resets x1. Similarly, edge e2 resets x2 whose differential
equation changes passing from ℓ2 to ℓ3, while edge e3 resets both variables whose differential
equation change passing from ℓ3 to ℓ1. ⋄

Note, that a skewed clock automaton is an initialized multirate automata, because the differential
equation for a component xi is always the same in all locations.
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12.3.2 From rectangular automata to multirate automata

The procedure for translating a rectangular automaton into a multirate automaton is based on the
rules shown in Fig. 12.10. To each state variable x of the rectangular automata we associate two
variables x′ and x′′. In each location, variable x′ evolves at the minimal possible speed while
variable x′′ evolves at the maximal possible speed. So when the multirate automaton during an
evolution is in a state (x′, x′′), the rectangular automaton for the same evolution can be in any state
x ∈ [x′, x′′] and vice versa.

This implies that when a variable of the rectangular automaton is assigned to x := [a′, a′′] in the
multirate automaton variable x′ must be assigned to the lower bound a′ and variable x′′ must be
assigned to the upper bound a′′ (see case (a) in the figure that describes an edge without guard).

Consider now an edge with guard in which variable x is assigned (see case (b) in the figure). The
guard condition x ∈ [g′, g′′] translates into the condition [x′, x′′] ∩ [g′, g′′] ̸= ∅, or equivalently
(x′ ≤ g′′) ∧ (x′′ ≥ g′). Finally, if the jump function assigns x := [a′, a′′] we must assign x′ = a′

and x′′ := a′′ as previously discussed.

The situation is more complicated when the edge has a guard x ∈ [g′, g′′] but the variable is not
reinitialized. In fact, if the value of x′ before the transition occurrence is smaller than the minimum
value of g′ then it should be reassigned to the value of g′, since x ≥ g′ after the transition occur-
rence. Conversely, if the value of x′′ before the transition occurrence is greater than the maximum
g′′ then it should be reassigned to the value of g′′, since x ≤ g′′ after the transition occurrence.
There are therefore four possible cases each one requiring to be modelled with a particular edge
(case (c) in the figure, right). For convenience, we use a simplified notation representing a sin-
gle edge but define a jump function of the form: (x′ < g′) → (x′ := g′), to indicate that the
variable x′ must be reassigned to the value of g′ only when it has value below g′ (case (c) in the
figure, lower right). Similarly, in the simplified notation we use a jump function of the form:
(x′′ > g′′) → (x′′ := g′′), to indicate that the variable x′′ must be reassigned to the value of g′′

only when it has value is above g′′.

Note that if the rectangular automaton is initialized, the corresponding multirate automaton is also
initialized.

Finally, we observe that this translation procedure shows that the class of rectangular automata is
substantially equivalent to the class of multirate automata, in the sense that the two models may
describe the same systems.

Example 12.13 The initialized rectangular automaton in Fig. 12.11 (a) can be translated applying
the procedure described above in the multirate automaton in Fig. 12.11 (b), which is also initial-
ized.

Note that the dynamics of variable x2 follows the same differential inclusion in the two locations
of the rectangular automaton and is never reinitialized. However in the multirate automaton x′′2 is
reinitialized by the edge going from location ℓ1 to ℓ2 because the guard of the transition depends
on the value of x2. However, in the multirate automaton variable x2 is not reinitialed by the edge
going from location ℓ2 for ℓ1 because the guard of the transition does not depend on the value x2.

⋄
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Figure 12.12: Rules for translating an initialized multirate automaton in a automaton timed (as-
suming ẋ(t) ̸= 0).

12.3.3 From initialized multirate automata to timed automata

The procedure we present in this final section converts an initialized multirate automaton into a
rational timed automaton, i.e., a timed automaton in which guards and assignments are rectangles
defined by rational numbers. We point out that the procedure for the construction of a region
graph may also be applied to a rational timed automaton. This requires to build regions that are
not contained in “cubes” of unitary side, but rather in “cubes”” of side 1/∆, where ∆ is the least
common multiplier of the denominators of all rational numbers considered. This increases the
computational complexity, but the number of these regions is nevertheless finite.

The procedure to convert a multirate automaton into a timed one is based on the rules shown in
Fig. 12.12. Consider a given location ℓ where state variable x evolves according to ẋ(t) = f >
0. We can perform a transformation of variable, defining a new scaled component of the state z(t)
related to the original one by the similarity transformation x(t) = fz(t). It is easy to see that the
scaled component is a clock because

ż(t) = ẋ(t)/f = f/f = 1.

This scaling requires to change for all edge inputting ℓ an assignment of x such as x := [a′, a′′]
into an assignment z := [a′/f, a′′/f ]. In addition, for all edges outputting ℓ guards are changed
from x ∈ [g′, g′′] to z ∈ [g′/f, g′′/f ].

Thus an evolution of the timed automaton that reaches the given location ℓ with a value z(t) of
the scaled component corresponds to an evolution of the original multirate automaton original that
reaches location ℓ with a value x(t) = z(t)/f of the original component, and viz. This however
only holds if every time the dynamics vary the x(t) and z(t) are reset: this explains why the
multirate automaton must be initialized.

The same approach can be used when ẋ(t) = f < 0 but one should take care care to suitably
modify the lower and upper bounds in assignments and guards (Fig. 12.12 below). Finally, it is
also possible to take into account variables whose dynamics is ẋ(t) = f = 0,, but in this case the
procedure is complicated and for sake of simplicity we will not discuss this case.

Example 12.14 The initialized multirate automaton in Fig. 12.3 is transformed by the procedure
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described above in the timed automaton in Fig. 12.13 (where the variables z1 and z2 have renamed
x1 and x2).



Chapter 13

Stability and stabilization of linear
switched systems

This final chapter is devoted to the stability of hybrid systems. We will assume that the reader is
already familiar with the notions of quadratic forms, singular values and Lyapunov stability: this
background material can be found in Appendix C and Appendix D.

The particular model considered in the chapter is called linear switched system: it consists of a
set of autonomous linear time-invariant dynamics among which an external agent may switch.
First we show by means of some examples that the stability for this class of systems cannot be
characterized by the eigenvalue criterion, that plays such an important role in the stability analysis
of linear time-invariant systems: for this reason other techniques based on Lyapunov functions are
necessary. Then we study two problems. The stability problem consists in determining if a linear
switched system is stable under arbitrary switching: we discuss a technique to solve this problem
based on the derivation of a common Lyapunov function. The stabilization problem consists in
determining if there exists a switching law that makes a linear switched systems stable: we discuss
two techniques to solve this problem, the first one based on the notion of quadratic stability and
the second one that imposes a minimal dwell time between two consecutive switchings.

A reference text for the study of the stability of hybrid systems is [17]. The results presented here
are mostly taken from [11, 12, 18].

13.1 Linear switched systems

The stability analysis of a hybrid system is a difficult problem for which there exist few general ap-
proaches. However, in recent years a series of original and significant results have been presented
for a particular class of hybrid automata, called linear switched systems.

Definition 13.1 A linear switched system is a hybrid automaton H = (L,X,A, I, E) where:

• the discrete state space is L = {1, 2, . . . , s}: in this case the locations are commonly called
modes of the switched systems;
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Figure 13.1: Two examples of switched linear systems.

• the continuous state space is X = Rn;

• for all modes i ∈ L the continuous dynamics is described by a linear autonomous equation

ẋ(t) = Aix(t);

• for all modes i ∈ L it holds Ii = X , i.e., the invariant coincides with the state space;

• all edges e ∈ E are controlled, with guard ge = X and jump function je = id. ▲

Two examples are shown in Fig. 13.1 (a) and (b): in practice the hybrid automaton describing
a switched systems consists in a finite state automaton in which each mode i ∈ {1, 2, . . . , s}
is associated with a state matrix Ai: it is not necessary to specify invariants, guards, and jump
functions since they are pre-assigned.

In the system in figure (a) from mode 1 it is possible to switch to mode 2 but not to mode 3. In other
cases, as shown in figure (b), it may be possible to switch from every mode to any other mode.
For the latter type of systems, it is not even necessary to specify the automaton that describes the
transitions between modes (it is a fully connected graph) but it is sufficient to describe the system
by simply listing the matrices associated to the different modes, i.e.,

{Ai}i=1,...,s = {A1, A2, . . . , As}.

As in any hybrid automaton, the evolution of a switched system is described by the signal x(t) ∈
R, which describes the value taken at time t by the continuous state, and the signal ℓ(t) ∈ L,
which describes the value taken at time t by the discrete state. We point out some peculiarities of
this model.

• The signal x(t) that describes the continuous state is continuous, since there are no jumps
that may reset its value.

• While all continuous dynamics are autonomous — because there exists no continuous input
— the switched system is not: in fact, it is driven by the discrete input signal ℓ(t), which is
also called switching law. Controlling a switched system, therefore, consists in imposing a
suitable law ℓ(t).
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• A switched system can also be seen as a time-varying system

ẋ(t) = Aℓ(t)x(t),

where matrix Aℓ(t), which depends on the switching law, is piece-wise constant and takes
values in the set {A1, . . . , An}.

In the following we will simply refer to the class of hybrid automata described here switched
systems, omitting the adjective linear.

13.2 Examples of stable and instable behaviors in switched systems

In this section we study the stability of switched systems in qualitative terms. The objective is to
show by means of some examples that the eigenvalue criterion does not provide neither necessary
nor sufficient conditions for stability analysis, unlike in the case of linear time-invariant continuous
systems. This motivates the need to use different criteria, based on Lyapunov analysis, that will
be introduced in the following sections.

13.2.1 The eigenvalue criterion does not provide sufficient conditions for stability

The following example shows that a switched system may be unstable even if all its modes are
stable1.

Example 13.1 Consider the switched system {A1, A2} with:

A1 =

 −1 10

−100 −1

 , A2 =

 −1 100

−10 −1

 .

The two state matrices are stable, having both eigenvalues λ(A1) = λ(A2) = {−1± j
√
1000} ⊂

C<0. In Fig. 13.2 (a) and (b) we have shown the state trajectories of the two systems from the
initial condition x(0) = [1 1]T : these are the curves eA1tx(0) and eA2tx(0) plotted in the plane
(x1, x2). The trajectories are spirals that, as expected, converge toward the origin. To make the
figure readable, the final part of the curves is not shown (the dotted lines denote that the spirals
continue until the origin).

Suppose the switching law is such that the first mode is active when the state is in quadrants II and
IV, and the second mode is active when the state is in quadrants I and III. In this case, the trajectory
of the switched system from the initial condition x(0) = [1 1]T is shown in Fig. 13.2 (c). As can be
seen, under this switching law the system becomes unstable, because the trajectory moves further
and further away from the origin. ⋄

This example shows that a switched system consisting of stable modes is not necessarily stable.
An explanation of this behavior, seemingly counterintuitive, can be provided from the analysis of
the singular values of the state transition matrices of the two modes.

1We say that a mode i is stable if its state matrix Ai is stable, i.e., Ai has has eigenvalues with negative real part.
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Figure 13.2: State trajectories of the systems in Example 13.1.
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Figure 13.3: Maximum singular values of the matrices A1 and A2 in Example 13.1.

Consider the matrix A1 in Example 13.1. The system characterized by such a matrix is stable
but this does not necessarily imply that starting from any initial state x(0) the norm of the vector
x(t) = eA1tx(0) monotonically decreases. In fact, according to Proposition C.5

||x(t)|| ≤ σmax(e
A1t)||x(0)||

and the equality holds for some x(0). If we plot the maximum singular value σmax of the matrix
eA1t versus t, we get the graph in Fig. 13.3. Here one notes that if t̄ > 0 is sufficiently small, in
the interval [0, t̄] the maximal singular value increases and has a value greater than 1. This implies
that there are states from which the norm of x(t) is initially increasing. These states are precisely
those in quadrants II and IV.

Matrix A2 shows a similar trend (see Fig. 13.3), but in this case the norm of the vector x(t) is
initially increasing starting from states in quadrants I and III. This explains how it is possible to
destabilize the system with the switching law described in Example 13.1.

There exist some classes of stable systems in which one can be sure that the norm of vector x(t)
monotonically decreases with t, i.e., the matrix eAt is always contractive for all t.
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Example 13.2 Consider a stable diagonal matrix A with spectrum

λ(A) : λ1 ≤ · · · ≤ λn < 0.

Then:

A =


λ1 0 · · · 0

0 λ2 · · ·
...

...
. . .

...

0 0 · · · λn

 and eAt =


eλ1t 0 · · · 0

0 eλ2t · · ·
...

...
. . .

...

0 0 · · · eλnt

 .

Matrix (eAt)T eAt has eigenvalues e2λ1t ≤ · · · ≤ e2λnt ≤ 1 and it holds

σmax(e
At) = eλnt < 1 (for all t ≥ 0).

This shows that matrix eAt is contractive and as a consequence it is not possible to destabilize a
switched system in which each mode is characterized by a stable diagonal state matrix. ⋄

13.2.2 The eigenvalue criterion does not provide necessary conditions for stability

The following example shows that a switched system may be stable even if all its modes are
unstable.

Example 13.3 Consider the switched system {A1, A2} with:

A1 =

 1 −10

100 1

 , A2 =

 1 −100

10 1

 .

The two state matrices are unstable, having both eigenvalues λ(A1) = λ(A2) = {1± j
√
1000} ⊂

C>0. In Fig. 13.4 (a) and (b) we have shown the state trajectories of the two systems from the
initial condition x(0) = [1 1]T . The trajectories are spirals that, as expected, diverge from the
origin.

Suppose the switching law is such that the first mode is active when the state is in quadrants II
and IV, and the second mode is active when the state is in quadrants I and III. In this case, the
trajectory of the switched system from the initial condition x(0) = [1 1]T is shown in Fig. 13.4.
(C). As can be seen, under this switching law the system becomes stable, because the trajectory
converges to the origin. ⋄

This behavior can be explained in terms of the minimal singular values of the state transition
matrices associated with the two modes. Consider matrix A1 in Example 13.3. The system char-
acterized by such a matrix is unstable but this does necessarily imply that starting from an initial
state x(0) the norm of the vector x(t) = eA1tx(0) monotonically increases. In fact, according to
Proposition C.5

σmin(e
A1t)||x(0)|| ≤ ||x(t)||
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Figure 13.4: State trajectories of the systems in Example 13.3.
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Figure 13.5: Minimum singular values of the matrices A1 and A2 in Example 13.3.

and the equality holds for some x(0). If we plot the minimum singular value σmin of the matrix
eA1t versus t, we get the graph in Fig. 13.5. Here one notes that if t̄ > 0 is sufficiently small, in
the interval [0, t̄] the minimal singular value decreases and its value is less than 1. This implies,
by Proposition C.5, that there are some states from which the norm of x(t) is initially decreasing.
These initial states are precisely those in quadrants II and IV.

Matrix A2 shows a similar trend (see Fig. 13.5), but in this case the norm the vector x(t) is initially
decreasing starting from states in quadrants I and III. This explains how it is possible to stabilize
the system with the switching law described in Example 13.3.

13.3 Stability and stabilization of switched systems

It has already been remarked that the evolution of a switched system is driven by a particular
control input: the switching law ℓ(t). However once the law is assigned is possible to consider
the controlled system ({Ai}i=1,...,s, ℓ(t)) and apply to it the definition of Lyapunov stability for
autonomous systems (see Appendix C).
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We can state two different problems in this setting.

Problem 13.1 (Stability) Given a switched system {Ai}i=1,...,s determine whether the controlled
system ({Ai}i=1,...,s, ℓ(t)) is (asymptotically) stable for all possible signals ℓ(t). The system
{Ai}i=1,...,s in this case is called (asymptotically) stable.

This is a typical analysis problem, which requires to determine whether the stability condition is
verified.

Problem 13.2 (Stabilization) Given a switched system {Ai}i=1,...,s determine, if it exists, a signal
ℓ(t) which makes the controlled system ({Ai}i=1,...,s, ℓ(t)) (asymptotically) stable. The system
{Ai}i=1,...,s in this case is called (asymptotically) stabilizable.

This is a typical control problem, which also requires to determine a particular switching law ℓ(t)
that satisfies the stability specification.

We have the following elementary results.

Proposition 13.1 Consider a switched system {Ai}i=1,...,s.

• A necessary condition for the system to be stable is that all its state matrices Ai be stable.

• A sufficient condition for the system to be stabilizable is that at least one of its state matrices
Ai be stable.

Proof. The first statement follows from the fact that if there exists an unstable matrix Aı̄, a constant
control law ℓ(t) = ı̄ destabilizes the system. The second statement follows from the fact that if
there exists a stable matrix Aȷ̄, a constant control law ℓ(t) = ȷ̄ stabilizes the system. □

In the following sections, some general techniques for stability analysis and for computing a sta-
bilizing switching law ℓ(t) are presented. All the presented results refer to asymptotic stability.

13.4 Stability by common Lyapunov function

In this section we present a technique called common Lyapunov function: it provides a sufficient
condition for the stability of switched systems. In the literature other approaches have also been
presented, such as the multiple Lyapunov functions technique [11, 12], that will not be treated here.

Proposition 13.2 Consider a switched system {Ai}i=1,...,s. If there exists a real symmetric matrix
P ≻ 0 such that for i = 1, . . . , s it holds

AT
i P + PAi ≺ 0 (13.1)

then the system is asymptotically stable.

Proof. Consider the function V (x) = xTPx which is positive definite. When the active dy-
namics is Aℓ(t) = Ai the derivative of this function with respect to time, as seen in the proof of
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Proposition D.3, is

dV (x(t))

dt
=

d

dt
xT (t)Px(t) = xT (t)

(
AT

i P + PAi

)
x(t) = xT (t)Zix(t),

where we have denoted Zi = AT
i P + PAi. According to eq. (13.1) the symmetric matrix Zi is

negative definite, and thus its maximal eigenvalue is λmax(Zi) < 0 and we define

λ̄ = max
i=1,...,s

λmax(Zi).

Since
dV (x(t))

dt
∈ {xT (t)Zix(t) | i = 1, . . . , s}

it also holds (cfr. Proposition C.2)

dV (x(t))

dt
≤ max

i=1,...,s
{xT (t)Zix(t)} ≤ max

i=1,...,s
{λmax(Zi)||x(t)||2} = λ̄ ||x(t)||2 < 0

for x ̸= 0.

Therefore, the continuous function V (x) is always decreasing no matter which is the active mode
and its derivative goes to zero only for x → 0. This means that V (x) qualifies as a Lyapunov
function common to all modes that ensures the asymptotical stability of the system. □

Example 13.4 Consider the switched system {A1, A2} with

A1 =

 −3 1

−1 −2

 and A2 =

 −2 −1

−1 −3

 .

Both matrices are stable, being λ(A1) = {−2.5 ± 0.866j} and λ(A2) = {−3618,−1382}.
Therefore, the necessary condition for stability is verified. Let now

P =

 3 1

1 2

 .

It holds

AT
1 P + PA1 =

 −20 −4

−4 −6


and this symmetric matrix is negative definite, having eigenvalues {−21.06,−4.94}. It also holds

AT
2 P + PA2 =

 −14 −10

−10 −14


and this symmetric matrix is negative definite as well, having eigenvalues {−24,−4}. We can
therefore conclude that the considered switched system is stable. ⋄
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Note that in order to apply the previous result it is necessary to determine a suitable matrix P and
this task is not always easy. Among the various techniques that can be used to determine a matrix
P which satisfies the conditions of Proposition 13.2 we mention one based on Linear Matrix
Inequalities2 (LMI). This technique will not be formally described but is used in the following
example.

Example 13.5 Consider the switched system {A1, A2} already studied in Example 13.4. We want
to determine if there exists a common Lyapunov function associated with a diagonal matrix P 3 .

The desired matrix has the form

P =

 a 0

0 b

 .

and since it must be positive definite the following conditions must be verified: a > 0

b > 0
(13.2)

Also it holds

Z1 = AT
1 P + PA1 =

 −6a a− b

a− b −4b

 .

This matrix must be negative definite and therefore must have negative eigenvalues. It has charac-
teristic polynomial

Pz1(s) = s2 + (6a+ 4b)s+ (−a2 − b2 + 26ab)

and its roots are negative if and only all its coefficients have the same sign (rule of Descartes)
hence the following conditions must be verified: 6a+ 4b > 0

−a2 − b2 + 26ab > 0
(13.3)

Finally, it holds

Z2 = AT
2 P + PA2 =

 −4a −a− b

−a− b −6b

 .

This matrix must be negative definite and therefore must have negative eigenvalues. It has charac-
teristic polynomial

PZ2(s) = s2 + (4a+ 6b)s+ (−a2 − b2 + 22ab)

2An LMI is an expression of the form

A0 + y1A1 + y2A2 + · · ·+ ykAk ≻ 0,

where y1, y2, . . . , yk are real unknown coefficients, A0, A1, A2, . . . , Ak are given symmetric matrices of order n and
≻ 0 denotes that the left hand side matrix is positive definite. A linear matrix inequality specifies a convex constraint
on the y’s. Note that equivalent forms of LMI can be given where a matrix is required to be negative definite, or
semidefinite.

3Here we consider a diagonal form to simplify the calculations but with the same procedure described here one
could have searched for an arbitrary symmetric matrix.
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and reasoning as before, one concludes that its coefficients must all have the same sign and thus
the following conditions must be verified: 4a+ 6b > 0

−a2 − b2 + 22ab > 0
(13.4)

So a diagonal matrix P , defining a common Lyapunov function for this problem must satisfy the
equations (13.2), (13.3), (13.4). Eliminating the redundant equations one obtains the constraint set

a > 0

b > 0

−a2 − b2 + 22ab > 0

that admits infinite solutions (e.g., a = b > 0). ⋄

In some cases, finally, the calculation of the matrix P is particularly easy.

Example 13.6 Consider the switched system {Ai}i=1,...,s where all the matrices Ai are real stable
diagonal matrices of order n. By choosing P = In×n one get function V (x) = xTPx = xTx =
||x|| which is a common Lyapunov function. Indeed, it holds AT

i P +PAi = 2Ai for i = 1, . . . , s,
and these diagonal (hence symmetric) matrces are all negative definite, having negative eigenval-
ues.

This provides an alternative proof to the result already discussed in Example 13.2: a switched
system consisting of stable diagonal matrices is asymptotically stable. ⋄

13.5 Stabilization

In this final section two techniques for the stabilization of switched systems will be presented. The
first, called quadratic stabilization, applies to systems whose modes are unstable and determines a
switching law ℓ(t) by means of state feedback, i.e., the choice of the active mode at time t depends
on the value taken by the continuous state x(t). The second, called stabilization by slow switching,
applies to systems whose modes are stable and aims to determine a minimum dwell time in which
each mode must remain active, so as to ensure stability.

13.5.1 Quadratic Stabilization

Definition 13.2 A switched system {Ai}i=1,...,s is said quadratically stabilizable if there exists a
quadratic function V (x) = xTPx with P ≻ 0, a real number ε > 0 and a switching law ℓ(t) such
that for t ≥ 0 it holds

xT (t)
(
AT

ℓ(t)P + PAℓ(t)

)
x(t) ≤ −ε||x(t)||2. (13.5)

▲
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In the previous definition V (x) is a quadratic Lyapunov function. In fact it is positive definite,
since P ≻ 0 . Furthermore, the condition (13.5), according to Proposition D.3, implies that the
derivative of V with respect to time is also negative and goes to zero only for x → 0. Thus the
system subject to the switching law ℓ(t) is asymptotically stable.

In the case of linear time-invariant systems it can be shown that stability and quadratic stability
coincide. This is not true in the case of switched systems. Therefore, a system could be stabiliz-
able but not quadratically stabilizable, because a common quadratic Lyapunov function may not
exists. It can be shown, for example, that the system studied in Example 13.3 is not quadratically
stabilizable [11].

The following result presents a condition for determining whether a switched system is quadrati-
cally stabilizable even if its modes are all unstable, and also allows one to determine a stabilizing
switching law. We state this result for systems consisting only of two modes.

Proposition 13.3 A switched system {Ai}i=1,2 is quadratically stabilizable if and only if there
exists a stable convex linear combination of its state matrices, i.e., there exists a real number
α ∈ [0, 1] such that the following matrix is stable:

Aeq = αA1 + (1− α)A2 (13.6)

Proof. We will only show that the condition (13.6) is sufficient to guarantee the quadratic stability.

Suppose that matrix Aeq is stable and chose any symmetric matrix Q ≻ 0. According to Proposi-
tion C.2 it holds xTQx ≥ λmin(Q)||x||2 where λmin(Q) is the smallest eigenvalue of Q.

According to Proposition D.4 there exists a symmetric matrix P ≻ 0 solution of the Lyapunov
equation

AT
eqP + PAeq = −Q

and therefore matrix P satisfies for every x ∈ Rn \ {0} the following inequality:

0 > −λmin(Q)||x||2 ≥ −xTQx = xT
(
AT

eqP + PAeq

)
x

= xT
(
(αA1 + (1− α)A2)

TP + P (αA1 + (1− α)A2)
)
x

= α xT
(
AT

1 P + PA1

)
x+ (1− α) xT

(
AT

2 P + PA2

)
x.

This implies that for every x ∈ Rn \ {0} at least one of the two terms

xT
(
AT

1 P + PA1

)
x and xT

(
AT

2 P + PA2

)
x (13.7)

must be less or equal to − λmin(Q)||x||2 < 0. We have seen that the first (resp., second) of these
terms represents the derivative of function V (x) = xTPx when the first (resp., second) mode
is active (see Proposition D.3). Hence, if the control law selects the mode corresponding to the
lower of these terms, the V (x) monotonically decreases and is a quadratic Lyapunov function.
Moreover, the condition (13.5) is verified with ϵ = λmin(Q). □

A constructive procedure to determine a stabilizing law is given in the next algorithm.
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Algorithm 13.1 (Quadratically stabilizing switching law)

INPUT: A switched system {A1, A2}.

OUTPUT: A quadratically stabilizing switching law ℓ(x(t)).

1. Determine a value of α such that the matrix Aeq in (13.6) is stable. If this value does not
exist stop: the system is not quadratically stabilizable.

2. Choose an arbitrary matrix Q ≻ 0 and determine matrix P ≻ 0 solution of the Lyapunov
equation

AT
eqP + PAeq = −Q.

3. Compute matrices Q1 and Q2 solution of

Q1 = −(AT
1 P + PA1) and Q2 = −(AT

2 P + PA2).

4. Determine the regions

X1 = {x ∈ Rn | −xTQ1x ≤ −xTQ2x} and X2 = {x ∈ Rn | −xTQ1x > −xTQ2x} = X\X1.

5. The following switching law is stabilizing:

ℓ(t) =

 1 if x(t) ∈ X1,

2 if x(t) ∈ X2.

Note that in the algorithm we have chosen to use mode 1 if −xTQ1x = −xTQ2x, but the opposite
choice would have been equally valid.

Example 13.7 Consider the switched system {A1, A2} with:

A1 =

 −3 4

0 1

 , A2 =

 1 −2

0 −3

 .

The two modes are unstable, having both arrays eigenvalues λ(A1) = λ(A2) = {−3, 1}.

For α = 0.5 we observe that the matrix

Aeq = 0.5A1 + 0.5A2 =

 −1 1

0 −1


is stable, having eigenvalues λ(Aeq) = {−1,−1}.

Choosing the symmetric matrix

Q =

 2 −1

−1 2

 ≻ 0
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Figure 13.6: Quadratic stabilization of the system in Example 13.7 and Example 13.8: (a) switch-
ing law with chattering, (b) switching law without chattering.

with eigenvalues λ(Q) = {1, 3}, the matrix P ≻ 0 solution of Lyapunov equation AT
eqP+PAeq =

−Q is P = I .

Finally, we compute

Q1 = −AT
1 P − PA1 =

 6 −4

−4 −2

 and Q2 = −AT
2 P − PA2 =

 −2 2

2 6


It holds X1 = {x ∈ Rn | −xTQ1x ≤ −xTQ2x}, i.e., this region includes the points that satisfy

−xT (Q1 −Q2)x ≤ 0 ⇐⇒ 8x22 + 12x1x2 − 8x21 ≤ 0

⇐⇒ 8(2x2 − x1)(0.5x2 + x1) ≤ 0.

This region is therefore bounded by the straight line r1 of equation x2 = 0.5x1 and by the straight
line r2 of equation x2 = −2x1 forming the border with region X2, as shown in Fig. 13.6 (a).

The same figure also shows an evolution of the system under the stabilizing switching law just
determined, starting from the initial condition x(0) = [1 1]T . Since x(0) ∈ X2 the active mode
is initially the second one. As soon as the state enters region X1 a switch toward the first mode
occurs. Note however that once the state reaches the line r1 chattering will occur: in practice if the
first mode is active the state is driven to X2, while if the second mode is active the state is driven
to X1. The theoretical solution — that is a Filippov solution as discussed in Subsection 10.2.4 —
consists in a sliding mode along the line r1 that converges to the origin. The evolution in fugure
has been calculated numerically with a small integration step. ⋄

In some cases, it may be desirable to avoid the establishment of a sliding mode. It is possible
to modify the algorithm to ensure the absence of chattering [12]. The modified algorithm is the
following.
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Algorithm 13.2 (Quadratically stabilizing switching law without chattering)

INPUT: A switched system {A1, A2}.

OUTPUT: A chattering-free quadratically stabilizing switching law ℓ(x(t)).

1. Determine a value of α such that the matrix Aeq in (13.6) is stable. If this value does not
exist stop: the system is not quadratically stabilizable.

2. Choose an arbitrary matrix Q ≻ 0 and determine P ≻ 0 solution of the Lyapunov equation

AT
eqP + PAeq = −Q.

3. Compute matrices Q1 and Q2 solution of

Q1 = −(AT
1 P + PA1) and Q2 = −(AT

2 P + PA2).

4. Select a parameter δ ∈ (0, 1) and determine the regions

X ′
1 = {x ∈ Rn | −xT δQ1x ≤ −xTQ2x}, X ′

2 = {x ∈ Rn | −xTQ1x ≥ −xT δQ2x},

and let X ′
0 = X \ (X ′

1 ∪X ′
2).

5. The following switching law is stabilizing:

ℓ(0) =

 1 if −xTQ1x ≤ −xTQ2x,

2 if −xTQ1x > −xTQ2x.

and for t > 0

ℓ(t) =

 1 if (x(t) ∈ X ′
1) ∨ (ℓ(t−) = 1 ∧ x(t) ∈ X ′

0),

2 if (x(t) ∈ X ′
2) ∨ (ℓ(t−) = 2 ∧ x(t) ∈ X ′

0).

This algorithm determines two regions X ′
1 ⊂ X1 and X ′

2 ⊂ X2 that are not adjacent and therefore
the continuous state space is partitioned into the three regions X ′

1, X ′
2 and X ′

0 = X \ (X ′
1 ∪X ′

2).
When the state x(t) enters region X ′

1 (resp., X ′
2) a switch to mode 1 (resp., 2) occurs, while when

the state enters or evolves in region X ′
0 the current mode is maintained.

Example 13.8 Consider again the system studied in Example 13.7. Applying Algorithm 13.2 in
step 4 we choose δ = 0.1.

The region X ′
1 = {x ∈ Rn | −xT δQ1x ≤ −xTQ2x} consists of the points that satisfy

−xT (δQ1 −Q2)x ≤ 0 ⇐⇒ 2.6x21 + 4.8x1x2 − 6.2x22 ≤ 0

⇐⇒ −6.2(x2 − 0.37x1)(x2 + 1.14x1) ≤ 0,

and is bounded by the straight lines of equation x2 = 0.37x1 and x2 = −1.14x1, as shown in
Fig. 13.6 (b).
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The region X ′
2 = {x ∈ Rn | −xTQ1x ≥ −xT δQ2x} consists of the points that satisfy

−xT (δQ2 −Q1)x ≤ 0 ⇐⇒ −6.2x21 + 8.4x1x2 + 2.6x22 ≤ 0

⇐⇒ 2.6(x2 − 0.62x1)(x2 + 3.9x1) ≤ 0,

and is bounded by the straight lines of equation x2 = 0.62x1 and x2 = −3.9x1, as shown in
Fig. 13.6 (b).

The part of the state space not covered by X ′
1 and X ′

2 determines the region X ′
0.

The same figure also shows an evolution of the system under the stabilizing switching law deter-
mined by Algorithm 13.2, starting from the initial condition x(0) = [1 1]T . Since x(0) ∈ X ′

2 the
active mode is initially the second one. As soon as the state enters region X ′

1 a switch toward the
first mode occurs, and so on. ⋄

One can extend this approach to switched systems with more than two modes. However, it is
necessary to make a restrictive assumption.

Assumption 13.1 Matrices Ai, for i = 1, . . . , s have all eigenvalues with positive real part.

The result we present for this case offers only sufficient conditions for the quadratic stability.

Proposition 13.4 A switched system {Ai}i=1,...,s that satisfies Assumption 13.1 is quadratically
stabilizable if there exists a stable convex linear combination of the matrices Ai, i.e., there exist
non-negative real numbers α1, . . . , αs, with

∑n
i=1 αi = 1, such that the following matrix is stable:

Aeq = α1A1 + α2A2 + · · ·+ αsAs (13.8)

Algorithm 13.1 and Algorithm 13.2 can be suitably modified to determine a stabilizing switching
law for systems with more than two modes.

13.5.2 Stabilization by slow switching

The last approach to the stabilization of switched systems that will be presented is applicable to
systems consisting of stable modes. For these systems any constant law ℓ(t) is able to stabilize the
system. However it is interesting to determine a non-trivial stabilizing law, that switches between
the various modes.

Proposition 13.5 Consider a switched system {Ai}i=1,...,s whose state matrices Ai are all stable.
Chose a positive constant ϵ < 1 , and define for all modes i a minimal dwell time δi ∈ R>0 that
satisfies:

σmax(e
Ait) ≤ ϵ for t ≥ δi.

Given a hybrid temporal trajectory τ = ([τ0, τ
′
0], [τ1, τ

′
1], . . .), where τ0 = 0, and τ ′k = τk+1, let

ℓ(t) be a piecewise constant switching law with

ℓ(t) = ik for t ∈ [τk, τ
′
k).
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This law is stabilizing if τ ′k − τk ≥ δik for all k ≥ 0.

Proof. Consider the evolution of the system subject to the law ℓ(t) for t ≥ 0 and denote xk = x(τk)
for k ≥ 0. It holds

xk+1 = eAik
(τ ′k−τk)xk

and so
||xk+1|| ≤ σmax

(
eAik

(τ ′k−τk)
)
||xk|| ≤ ϵ||xk||.

Therefore it holds limk→∞ ||xk|| = 0, which ensures the asymptotic stability of the system. □

Example 13.9 Consider the system {A1, A2} studied in Example 13.1 whose matrices are stable.
From the analysis of Fig. 13.3 one can verify that for t ≥ 1.5 s the maximum singular value of the
corresponding state transition matrices eA1t and eA2t is δ = 0.46. This ensures that the switched
system will be stable for any switching law which imposes a minimal dwell time in each mode
greater than or equal to 1.5 s before a switching to the other mode occurs. ⋄
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Appendix A

Functions and relations

A.1 Powersets and partitions

Let us first introduce the notion of power set of a given set.

Definition A.1 Given a set1 X its power set

2X = {U | U ⊆ X}

is the set of all subsets of X . ▲

Note that when X is a finite set of cardinality |X| = n its power set has cardinality |2X| = 2n.
This explains the notation used to denote power sets.

Example A.1 Given set X = {1, 2, 3}, its power set is

2X = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Set X has cardinality n = 3 while set 2X has cardinality 23 = 8. ⋄

Definition A.2 A partition of a set X is a (possibly infinite) collection of sets

Π = {π1, π2, . . . , πn} ⊆ 2X

such that:

i) πi ⊆ X for i ∈ {1, 2, . . . , k};

ii) X =
∑k

i=1 πi;

iii) πi ∩ πj = ∅ for i ̸= j.

▲
1This definition applies to any set X , be it finite, countable or uncountable.
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Condition i) specifies that each set πi, also called a cell of the partition, is a subset of X . Condition
ii) specifies that the union of the subset πi’s coincides with X . Finally, condition iii) specifies that
the cells of a partition are mutually disjoint.

Note that a partition Π of a set X has a cardinality which is bounded by the cardinality of X , i.e.,
1 ≤ |Π| ≤ |X|.

Example A.2 Given set X = {1, 2, 3}, the following are its different partitions:

{{1}, {2}, {3}} {{1, 2}, {3}} {{1}, {2, 3}} {{1, 3}, {2}} {{1, 2, 3}}.

⋄

A.2 Functions

Definition A.3 A function f : X → Y from set X (called domain) to set Y (called co-domain)
maps an element x ∈ X to an element f(x) ∈ Y . A function is called total if it is defined for all
elements on its domain and partial otherwise. ▲

Example A.3 Given the set of integers Z = {0,±1,±2, . . .} and the set S = {−, 0,+}, function
f : Z → S defined as

f(x) = sign (x) =


− if x < 0,

0 if x = 0,

+ if x > 0,

associates with each integer x ∈ Z its sign. This function is total. ⋄

Example A.4 Given the set of natural numbers N = {0, 1, 2, . . .}, function f : N → R defined as
f(x) = x−1 associates with a natural number x ∈ N its inverse. This function is partial because it
is not defined for x = 0. ⋄

A function maps an element in domain X to a unique element in co-domain Y .

A.3 Relations

One can generalize the notion of function defining a relation that maps an element of X to a subset
of Y .

We can formally define a relation as follows.

Definition A.4 A relation from set X to set Y is a function

R : X → 2Y

mapping each element of X into a subset R(x) ⊆ Y .
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Equivalently, we can define a relation from set X to set Y as a subset

R = {(x, y) | x ∈ X, y ∈ R(x) } ⊆ X × Y.

To denote that pair (x, y) belongs to R one may write (x, y) ∈ R or xRy. ▲

Example A.5 Given the set of natural numbers N, relation R : N → 2N that maps each element
of x into the set of natural numbers smaller than or equal to x is

R(x) = {0, 1, . . . , x}.

We can equivalently define this relations as the set

R = {{0, 0}, {1, 0}, {1, 1}, {2, 0}, {2, 1}, {2, 2}, {3, 0}, . . .} ⊆ N× N.

⋄

Example A.6 Relation R = { (a, b) | a is the author of book b } ⊆ Authors×Books associates
with an author their books. ⋄

Note that a function is a restricted form of relation where set R(x) can be: (a) a singleton (i.e.,
contains a single element) if function f is defined on x; (b) the empty set if partial function f is
not defined on x.

Example A.7 Function sign : Z → S previously defined can also be described as sign ⊆ Z × S
listing all pairs (x, s), i.e.,

sign = {(0, 0), (1,+), (−1,−), (2,+), (−2,−), . . .}.

⋄

Note that when f is a function there cannot exist two pairs (x, y), (x, y′) ∈ f with y ̸= y′.

A.4 Binary relations

An interesting class of relations are the binary relations.

Definition A.5 A relation R ⊆ X×X whose co-domain coincides with its domain X , is a called
a binary relation on X . ▲

Example A.8 Binary relation R′ = { (x, x2) | x ∈ R } ⊆ R× R maps a real number x ∈ R to
its square. Binary relation R′′ = { (x, 2x) | x ∈ R } ⊆ R× R maps a real number x ∈ R to its
double. ⋄

We can also define the inverse of a relation.
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Definition A.6 Given a relation R ⊆ X × Y its inverse relation is the relation

R−1 = { (y, x) | (x, y) ∈ R } ⊆ Y ×X.

▲

Example A.9 The inverse of relation R defined in Example A.6 is

R−1 = { (b, a) | book b is written by author a } ⊆ Books × Authors.

The inverse of relation R′ defined in Example A.8 is

(R′)−1 = { (x, y) | x ∈ R≥0, y = ±√
x } ⊆ R× R,

that maps a non-negative real number2 to its square root (positive or negative).

The inverse of relation R′′ defined in Example A.8 is

(R′′)−1 = { (x, x/2) | x ∈ R } ⊆ R× R,

that maps a real number to its half. ⋄

We conclude defining a special family of relations (they are actually total functions) called iso-
morphism.

Definition A.7 A relation R ⊆ X × Y is an isomorphism if the following two conditions are
verified:

(a) for all x ∈ X there exists and is unique element y ∈ Y such that (x, y) ∈ R;

(b) for all y ∈ Y there exists and is unique element x ∈ X such that (y, x) ∈ R−1.

Equivalently, we say that relation R ⊆ X × Y is an isomorphism if both R and R−1 are total
functions. ▲

Example A.10 Consider the relations defined in Example A.9.

Relation R is not an isomorphism. In fact, a book can have more than one author and an author
may have written more than one book.

Relation R′ is not an isomorphism. In fact, while R′(x) = x2 is a total function on R, its inverse
(R′)−1(x) =

√
x is not. First of all, the square root is not defined for negative numbers (unless

we consider the field of complex numbers). Secondly, for all positive reals x the square root can
be both a positive or negative real, e.g.,

√
4 = {−2, 2}.

Relation R′′ is an isomorphism. In fact, for each real number x one can univocally compute its
double R′′(x) = 2x and, conversely, for each real number x one can univocally compute its half
(R′′)−1(x) = x/2. ⋄

2Here R≥0 denotes the set of non-negative real numbers.
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A.5 Equivalence relations

Definition A.8 A binary relation R ⊆ X × X is called an equivalence relation (or equivalence
for short) it if satisfies the following three properties:

• transitive: (x, x′) ∈ R, (x′, x′′) ∈ R =⇒ (x, x′′) ∈ R;

• symmetric: (x, x′) ∈ R =⇒ (x′, x) ∈ R;

• reflexive: for all x ∈ X: (x, x) ∈ R.

▲

Example A.11 Consider relation ∼ on the set of real numbers defined as x ∼ y if ⌊x⌋ = ⌊y⌋, i.e.,
x and y have the same floor3. As an example, 1 ∼

√
2 ∼ 1.999. One can readily verify that this

relation is transitive, symmetric and reflexive, hence it is an equivalence. ⋄

Given an equivalence relation R on set X , one can define the corresponding equivalence classes.

Definition A.9 Let R ⊆ X×X be an equivalence relation and consider x ∈ X . The equivalence
class of x with respect to relation R is the set [x] := {x′ ∈ X | (x, x′) ∈ R } of all those elements
in X that are in relation with x. ▲

Example A.12 Given relation ∼ as in Example A.11, the equivalence class of an arbitrary real
number x is the set [x] = [ ⌊x⌋, ⌊x⌋+ 1 ), i.e., the real interval between the floor of x (included)
and the next integer (excluded). As an example, [

√
2] = [1, 2). ⋄

An important result is presented in the next proposition, whose proof is omitted.

Proposition A.1 Given an equivalence relation R ⊆ X × X , the set ΠR of its equivalence
classes4 with respect to R induces a partition of X . ■

Example A.13 In the previous example, the equivalence classes of equivalence ∼ are all intervals
of the form πk = [k, k + 1) with k ∈ Z and set Π∼ := { πk | k ∈ Z} is a partition of R. ⋄

Finally we note that an equivalence relation R is perfectly characterized by the set of its equiv-
alence classes ΠR. In fact, if a partition ΠR = {π1, π2, . . . , πk} is given, one can define the
corresponding relation as follows: R = { (x, x′) | (there exists π ∈ ΠR) x, x′ ∈ π }.

3The floor of a real number x is the largest integer smaller than or equal to x.
4The set of equivalence classes with respect to relation R is also denoted by X/R and is called quotient of X

through R.
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Appendix B

Elements of graph theory

Many discrete events models, including automata, Markov chains, Petri nets, are based on graphs.
In this appendix the basic elements of graph theory are presented. A comprehensive introduction
to this field can be found in the excellent book [3].

B.1 Basic definitions

Definition B.1 A graph is a pair G = (V,A), where V is a set of nodes (or vertices), and A is a
set of edges or arcs. ▲

Each edge connects two nodes, and two nodes connected by an edges are called adjacent. Fig. B.1 (a)
shows graph G = (V,A) with set of nodes V = {v1, v2, v3} and set of edges A = {a1, a2}. The
nodes are represented by dots or circles and the edges by arc or lines. One may also denote an
edge by a pair of unordered nodes: as an example, the two edges of the graph in Fig. B.1 (a) are
a1 = {v1, v2} and a2 = {v2, v3}.

Definition B.2 A directed graph (or digraph) is a graph whose edges are oriented from a tail node
to a head note. The orientation is denoted by an arrow from tail to head. ▲

In a digraph one denotes an edge with tail v and head v′ by the ordered pair (v, v′). In a digraph it
is also possible to have loops, i.e., edges that have the same node as head and tail.

v1 

a1 

v2 

v3 

a2 

v1 

a1 

v2 

v3 

a2 

v1 

a1 

v2 

v3 

a2 

a3 

(a) (b) (c) 

a4 

Figure B.1: Three graphs.
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In Fig. B.1, graph (a) is undirected while graphs (b) and (c) are digraphs. In the graph in Fig. B.1 (b)
we can write a1 = (v1, v2) where v1 is the tail and node v2 is the head of edge a1. In the graph in
Fig. B.1 (c) edge a4 = (v3, v3) is a loop on node v3.

Definition B.3 A graph G = (V,A) is called bipartite if it is possible to partition the set of nodes
into two disjoint subsets V = V1 ∪ V2, such that A ⊆ (V1 × V2) ∪ (V2 × V1), that is each edge
connects two nodes belonging to different subsets. ▲

The definition of bipartite graph can also be naturally extend to k partitions: a graph is k-partite if
V = V1 ∪ · · · ∪ Vk (with Vi ∩ Vj = ∅ for i ̸= j) and if each edge joins nodes belonging to two
different partitions, that is, A ∩ (Vi × Vi) = ∅ for all i.

In Fig. B.1, graphs (a) and (b) are bipartite if we consider V1 = {v1, v3} and V2 = {v2} and can
also be tripartite considering each node in a partition by itself. The graph in Fig. B.1 (c), on the
contrary, can not be k-partite for any value of k due to the presence of loop a4.

B.2 Paths and cycles

Definition B.4 A path in a graph is a sequence

γ = vj0aj1vj1aj2 · · · ajkvjk
alternately composed by a node vji ∈ V and an edge aji ∈ A, where aji = {vji−1 , vji}, i.e., every
node vji−1 is adjacent through edge aji to the following node vji . We also say that this path leads
from vj0 to vjk and has length k (the length of a path is equal to the number of edges that compose
it).

A path γ = vj0aj1vj1aj2 · · · ajkvjk is directed if aji = (vji−1 , vji), that is each edge aji is directed
from node vji−1 to node vji . ▲

As an example, let γ = v1a1v2a2v3. In the graph shown in Fig. B.1 (a), γ is a path. In the graph
in Fig. B.1 (b), γ is a directed path. In the graph in Fig. B.1 (c), γ is a path but is not a directed
path.

Definition B.5 A cycle is a path γ = vj0aj1vj1aj2 · · · ajkvjk where vj0 = vjk , i.e., the initial and
final node coincide. A cycle is called directed if every edge aji is directed from node vji−1 to node
vji . A cycle is called elementary if it does not pass twice through the same node, i.e., vjq ̸= vjp
for q, p = 0, 1, . . . , k − 1. ▲

In the graphs shown in Fig. B.1 (a) and Fig. B.1 (b) there are no cycles. In the graph in Fig. B.1 (c),
paths v1a3v3a2v2a1v1 and v3a4v3 are both elementary directed cycles, while path v3a3v1a1v2a2v3
is a non-directed elementary cycle. Finally, in the graph in Fig. B.1 (c) paths v3a2v2a1v1a3v3a4v3
and v3a4v3a4v3 are examples of non-elementary directed cycles.

Definition B.6 A graph is connected if for every pair of nodes v, v′ ∈ V there exists a path from
v to v′. A directed graph is strongly connected if for all ordered pairs of nodes v, v′ ∈ V there
exists a directed path from v to v′. ▲
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v1 v2 

(a) (b) (c) 

v3 v4 

v1 v2 

v3 

v1 v2 

v3 

(d) 

v1 v2 

v3 v4 v4 v4 

Figure B.2: Examples of graphs: (a) a forest; (b) a tree; (c) an acyclic graph; (d) a cyclic graph.

The three graphs in Fig. B.1 are connected. The digraph in Fig. B.1 (b) is not strongly connected:
as an example, there is no directed path from v2 to v1 (note, however, that there exists a directed
path from v1 to v2). The digraph in Fig. B.1 (c) is strongly connected.

The graph in Fig. B.2 (a) is not connected: as an example, there is no path leading from v1 to v4.
The graphs in Fig. B.2 (b) and Fig. B.2 (c) are connected but not strongly connected: in both there
is no directed path from v1 to v4. The graph in Fig. B.2 (d) is strongly connected.

B.3 Subgraphs and components

Definition B.7 A forest is a graph that contains no cycles. A tree is a connected graph that con-
tains no cycles. A digraph is called acyclic if it contains no directed cycles. ▲

The graphs in Fig. B.1 (a) and Fig. B.1 (b) are trees. The graph in Fig. B.2 (a) is a forest composed
by two trees. The graph in Fig. B.2 (b) is a tree. The graph in Fig. B.2 (c) is an acyclic graph
because it does not contain directed cycles, but it is not a tree because it contains undirected
cycles. The graph in Fig. B.2 (d) is a cyclic graph.

Definition B.8 A graph G′ = (V ′, A′) is called a subgraph of G = (V,A) (denoted by G′ ⊆ G) if
V ′ ⊆ V and A′ ⊆ A ∩ (V ′ × V ′).

In particular, if A′ = A ∩ (V ′ × V ′), i.e., G′ contains all edges of G connecting nodes in V ′, we
say that G′ is the subgraph induced by V ′. ▲

In Fig. B.2, graph (a) is a subgraph of (b), which is in turn a subgraph of (c).

In Fig. B.3, graph (b) is the subgraph of (a) induced by the set of nodes V ′ = {v1, v2, v3}.

Note that given a graph G = (V,A), its subgraph induced by a set of nodes V ′ ⊆ V can be
obtained removing from G all nodes in V \ V ′ and all relative edges.

Finally, note that the graph in Fig. B.3 (c) is isomorphic to the graph in Fig. B.3 (b), in the sense
that one is obtained from the other one by simply changing the label of the nodes.

Definition B.9 A component of graph G = (V,A) a is a subgraph G′ ⊆ G which is connected and
maximal, i.e., there exists no another connected subgraph G′′ such that G′ ⊊ G′′ ⊆ G. ▲
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v1 v2 

(a) (b) (c) 

v3 v4 

v1 v2 

v3 

v2 v1 

v3 

Figure B.3: Examples of graphs: (b) is a subgraph of (a); (c) is isomorphic to (b).

v1 v3 

v2 v4 

v5 v7 

v6 

G1 

G2 G4 

G3 

Figure B.4: A directed graph and its strongly connected components.

If a graph G is connected, its unique component is the graph itself.

The non-connected forest in Fig. B.2 (a) has two components. The first one is tree G1 = (V1, A1),
with V1 = {v1, v2} and A1 = {(v1, v2)}. The second one is tree G2 = (V2, A2), with V2 =
{V3, V4} and A2 = {(V3, V4)}. Note that the components of a forest are always trees.

Definition B.10 A strongly connected component of a digraph G = (V,A) is a subgraph G′ ⊆ G
which is strongly connected and maximal, i.e., there exists no another strongly connected subgraph
G′′ such that G′ ⊊ G′′ ⊆ G. ▲

If a graph G is strongly connected, its unique strongly connected component is the graph itself.

The graph in Fig. B.4 has four strongly connected components G1, G2, G3 and G4, as indicated in
the figure.

The strongly connected components of a digraph induce a partition of its nodes.

Proposition B.1 Given a digraph G = (V,A) with r strongly connected components, the set of
nodes V can be partitioned into r subsets V = V1∪V2∪· · ·∪Vr such that every subgraph induced
by subset Vi is a strongly connected component of G.

Proof. Consider the binary relation R ⊆ V × V between nodes of a graph defined as follows:
vRv′ if there exists a directed path from node v to v′ and a directed path from node v′ to v. Is easy
to show that this relation is a relation of equivalence (see subsection A.5), and each equivalence
class corresponds exactly to the set of nodes of a strongly connected component. Hence these
classes represent a partition of V . □
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For example, the two (strongly connected) components of the forest in Fig. B.2 (a) are the two
trees corresponding to the partition V = V1 ∪ V2, with V1 = {v1, v2} and V2 = {V3, V4}. The
four strongly connected components of the graph in Fig. B.4 correspond to the partition V =
V1 ∪ V2 ∪ V3 ∪ V4, with V1 = {v1} and V2 = {v2}, V3 = {v3, v4} and V4 = {v5, v6, v7}.

Once the strongly connected components of a directed graph have been determined, it is possible
to classify these components into two categories.

Definition B.11 A strongly connected component G′ = (V ′, A′) of a digraph G = (V,A) is
called:

• ergodic if A ∩ (V ′ × (V \ V ′)) = ∅, i.e., there is no edge in G that goes from a node in V ′

to a node not in V ′;

• transient if A ∩ (V ′ × (V \ V ′)) ̸= ∅, i.e., there is at least one edge in G that goes from a
node in V ′ to a node not in V ′. ▲

According to this definition the strongly connected components G1 and G3 of the graph in Fig. B.4
are transient. In fact, the component G1 has two output edges — one directed to component G2

and one directed to component G3 — while the component G3 has an output edge directed to
component G4. Components G2 and G4 are ergodic.

Note that a digraph has at least one ergodic component, while it may have zero or more transient
components. A strongly connected digraph G has a single ergodic connected consisting in the
graph itself and is also called irreducible.

The main interest of this classification of components into ergodic and transient comes from the
following observation. Assume one is traversing a digraph moving from state to state following a
directed path. From any node of a strongly connected component there is always a directed path
that leads to any other node of the same component. However, as soon as one leaves a transient
component traversing one of its output edges, there exist no path leading back to the component.
Conversely, once an ergodic component has a dual property: once it has been reached, there exists
no path leaving it.
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Appendix C

Quadratic forms and singular values

In this appendix the elementary concepts of quadratic forms and singular values are defined.

C.1 Symmetric matrices and quadratic forms

Definition C.1 A matrix M ∈ Rm×n is called symmetric if M = MT , i.e., if it coincides with its
transpose. ▲

This definition implies that a symmetric matrix is a square matrix, i.e., m = n.1

Proposition C.1 A real symmetric matrix M ∈ Rn×n has real eigenvalues, i.e.,2 λ(M) ⊂ R.

Example C.1 It is easy to prove the previous result, in the particular case of second order matrices.
A generic matrix in this class can be written as:

M =

 a b

b c


where a, b, c ∈ R. Its eigenvalues are the roots of polynomial P (s) = |sI −A| = s2− (a+ c)s+
(ac− b2), i.e., they are

λ1,2 =
(a+ c)±

√
(a+ c)2 − 4ac+ 4b2

2
=

(a+ c)±
√

(a− c)2 + 4b2

2

and thus are real number being its discriminant (a− c)2 + 4b2 non-negative for all a, b e c. ⋄

Definition C.2 The quadratic form V : Rn → R corresponding to a real symmetric matrix M of
order n is an homogeneous polynomial of degree two in variable x ∈ Rn defined by

V (x) = xTMx.

1The definition of symmetric matrix may also apply to complex matrices. However, in the field of complex numbers
a more general notion of symmetry is the following: a matrix M ∈ Cn×n is called hermitian if M = M∗, where M∗

denotes the complex conjugate of the transpose of matrix M .
2Given a matrix M of order n we denote λ(M) = {λ1, . . . , λn} its spectrum, i.e., the multiset of its eigenvalues.
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▲

Example C.2 Let x = [x1 x2]
T ∈ R2: the quadratic form corresponding to the symmetric matrix

M defined in Example C.1 is V (x1, x2) = ax21 + cx22 + 2bx1x2.

Let x = [x1 x2 x3]
T ∈ R3: the quadratic form corresponding to the symmetric matrix of order 3

M =


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


is V (x1, x2, x3) = a1,1x

2
1 + a2,2x

2
2 + a3,3x

2
3 + 2a1,2x1x2 + 2a1,3x1x3 + 2a2,3x2x3. ⋄

We now recall the definition of norm.

Definition C.3 Given a vector x ∈ Rn its euclidean norm (or 2-norm) is the scalar function

||x|| =
√
xTx =

√√√√ n∑
i=1

x2i .

▲

This value represents the length of the vector from the origin to the point whose coordinate are x
in an n-dimensional space.3

The following proposition, whose proof is omitted, provides bounds for the value that a quadratic
form can take.

Proposition C.2 Given a real symmetric matrix M ∈ Rn×n we denote λmin(M) its smallest
eigenvalue and λmax(M) its largest eigenvalue. For all x ∈ Rn it holds

λmin(M)||x||2 ≤ xTMx ≤ λmax(M)||x||2.

Furthermore these bounds are strict, because if vmin is an eigenvector associated with λmin(M)
and vmax is an eigenvector associated with λmax(M) if holds

vTmin (Mvmin) = vTmin (λmin(M)vmin) = λmin(M)vTminvmin = λmin(M)||vmin||2

and

vTmax (Mvmax) = vTmax (λmax(M)vmax) = λmax(M)vTmaxvmax = λmax(M)||vmax||2.

Definition C.4 A real symmetric matrix M (and its corresponding quadratic form) V (x) = xTMx)
is called:

3In the field of complex numbers the definition of 2-norm is generalized as follows: if x ∈ Cn then ||x|| =
√
x∗x.
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• positive definite if V (x) > 0 for all x ∈ Rn \ {0} (to denote this we write M ≻ 0);

• positive semidefinite if V (x) ≥ 0 for all x ∈ Rn and there exists some x ̸= 0 such that
V (x) = 0 (to denote this we write M ⪰ 0);

• negative definite if V (x) < 0 for all x ∈ Rn \ {0} (to denote this we write M ≺ 0);

• negative semidefinite if V (x) ≤ 0 for all x ∈ Rn and there exists some x ̸= 0 such that
V (x) = 0 (to denote this we write M ⪯ 0));

• indefinite otherwise. ▲

Example C.3 Consider the real symmetric matrices

M1 =

 3 −1

−1 3

 , M2 =

 −1 2

2 2

 .

The quadratic form associated to the first matrix is V1(x1, x2) = 3x21 + 3x22 − 2x1x2 = 2x21 +
2x21 + (x1 − x2)

2 which is always positive for x ̸= [0 0]T . Hence M1 and V1 are positive definite.

The quadratic form associated to the second matrix is V2(x1, x2) = −x21 + 2x22 + 4x1x2 which
assumes a positive value in x = [0 1]T and a negative value in x = [1 0]T . Hence M2 and V2 are
indefinite. ⋄

The properties defined above can be directly checked exploiting the following results.

Proposition C.3 A real symmetric matrix M is:

• positive definite if and only if all its eigenvalues are positive, i.e., λmin(M) > 0;

• positive semidefinite if and only if all its eigenvalues are non-negative and at least one is
null, i.e., λmin(M) = 0;

• negative definite if and only if all its eigenvalues are negative, i.e., λmax(M) < 0;

• negative semidefinite if and only if all its eigenvalues are non-positive and at least one is
null, i.e., λmax(M) = 0;

• indefinite if and only if there exists eigenvalues of opposite sign, i.e., λmin(M) < 0 and
λmax(M) > 0.

Proof. Follows from Proposition C.2. □

The following examples will clarify this.

Example C.4 Consider matrices M1 and M2 in Example C.3.

We showed that matrix M1 is positive definite and in fact it has eigenvalues λ(M1) = {2, 4}.
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We showed that matrix M2 is indefinite and in fact it has eigenvalues λ(M2) = {−2, 3}.

Consider the real symmetric matrix

M3 =


−1 −1 0

−1 −1 0

0 0 −1

 .

Matrix M3 has eigenvalues λ(M2) = {−2,−1, 0}, hence it is negative semidefinite. ⋄

We conclude this section recalling the more general notion of a positive definite function (not
necessarily a quadratic form). Analogous definitions can also be given for negative definite or for
semidefinite functions.

Definition C.5 A continuous scalar function V : Rn → R with argument x ∈ Rn is positive
definite in x̄ if there exists a neighborhood Ω of x̄ such that V (x) > 0 for all x ̸= x̄ in Ω and
V (x̄) = 0. If Ω = Rn, then V (x) is called globally positive definite. ▲

Example C.5 Let x = [x1 x2]
T ∈ R2 and consider function V (x1, x2) = 2(x1 − 1)2 + x22(1 −

x2) that is not a quadratic form. This function is positive definite in x̄ = (1, 0): in fact, in
neighborhood Ω = {x ∈ R2 | x2 < 1} it holds V (x1, x2) > 0 for x ̸= x̄ and V (x̄) = 0. This
function is not globally negative definite: as an example V (0, 2) = −2. ⋄

A (semi)definite quadratic form is a particular case of a function (semi)definite in x = 0. Note
that if a quadratic form is (semi)definite, then it is globally (semi)definite.

A graphical representation of the positive definite quadratic form V (x1, x2) = 2x21 + x22 + x1x2
is shown in Fig. C.1. The 3-D plot of V (x1, x2) for x1, x2 ∈ [−2, 2] is shown ion the left. The
function takes a positive value on the entire domain, except in the origin where V (0, 0) = 0. The
figure on the right shows the contour levels4 of the quadratic form on plane (x1, x2) , i.e., the
curves

Cv = {(x1, x2) | V (x1, x2) = v}
describing the set of points where the quadratic form takes the same value v ∈ R≥0. Note that
if v ̸= v′ then Cv ∩ Cv′ = ∅ (two different contour levels cannot intersect). Also if v ≤ v′ the
contour Cv lies within Cv′ and in particular for v = 0 the contour C0 reduces the single point
(0, 0).

The case of arbitrary definite functions, other than quadratic forms, may be more complex. As
an example, the graphical representation of function V (x1, x2) in Example C.5, which is positive
definite in x̄ = (1, 0), is shown in Fig. C.2.

C.2 Singular values

We now consider matrices which are possibly not square.
4In general, for functions of more than 2 variables the set of points where the function takes the same value are

called level sets.
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Figure C.1: Graphical representation of the positive definite quadratic form V (x1, x2) = 2x21 +
x22 + x1x2: 3-D plot (left) and contour levels (right).
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Figure C.2: Graphical representation of function V (x1, x2) in Example C.1, which is positive
definite in x̄ = (1, 0): 3-D plot (left) and contour levels (right).
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Definition C.6 Given a real matrix M ∈ Rm×n, its singular values are the square roots of the
eigenvalues of matrix MTM .

The set of singular values of matrix M is denoted σ(M). The smallest5 and the largest singular
values are denoted, respectively, σmin(M) and σmax(M). ▲

Note that given an arbitrary matrix M ∈ Rm×n (possibly not square), matrix MTM is a symmetric
matrix of order n.

Proposition C.4 The singular values of a real matrix M are non-negative real numbers.

Proof. As a first step, let us prove that the eigenvalues of MTM are positive real numbers. Ma-
trix MTM is symmetric, hence by Proposition C.1 its eigenvalues are real. To show they are
non-negative, according to Proposition C.3, it is sufficient to show that matrix MTM is positive
semidefinite: such is the case because if we define y = Mx for an arbitrary x, it holds

xT (MTM)x = yT y = ||y||2 ≥ 0.

Since matrix MTM has non-negative real eigenvalues, the square roots of these numbers are also
non-negative real numbers. □

Example C.6 Consider matrices

M4 =


1 2 0

0 2 2

1 0 0

 ; M5 =

 1 −0.8

1 0



Matrix MT
4 M4 has eigenvalues λ(MT

4 M4) = {0.563, 2.63, 10.8}. Hence M4 has singular values
σ(M4) = {0.750, 1.62, 3.29}, with σmin(M4) = 0.750 and σmax(M4) = 3.29.

Matrix MT
5 M5 has eigenvalues λ(MT

5 M5) = {0.27, 2.37}. Hence M5 has singular values σ(M5) =
{0.52, 1.54}, with σmin(M5) = 0.52 and σmax(M5) = 1.54. ⋄

Singular values assume particular importance when we study the properties of the linear operator
associated to a m × n matrix M : this is the function fM : Rn → Rm defined as: fM (x) = Mx.
This operator transforms a vector x ∈ Rn in the operator range into a vector Mx ∈ Rm in the
operator image.

For any vector x ∈ Rn \ {0} we can define the scalar gain corresponding to x

gM (x) =
||Mx||
||x|| ∈ R≥0

which denotes the ratio between the magnitude of image vector Mx ∈ Rm and that of the range
vector x ∈ Rn.

The following fundamental result hold.
5The following proposition shows that the singular values are real numbers, and thus it is always possible to

determine the smallest and largest element.
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Proposition C.5 Given a matrix M ∈ Rm×n and an arbitrary vector x ∈ Rn in its range, it holds
that

σmin(M) ||x|| ≤ ||Mx|| ≤ σmax(M) ||x||. (C.1)

Furthermore

σmin(M) = min
x∈Rn

||Mx||
||x|| e σmax(M) = max

x∈Rn

||Mx||
||x|| . (C.2)

Proof. We start by proving eq. (C.1). If y = Mx then ||y||2 = yT y = xT (MTM)x. Consider
now the quadratic form associated with the symmetric matrix MTM . By Proposition C.2 it holds

λmin(M
TM)||x||2 ≤ xT (MTM)x ≤ λmax(M

TM)||x||2,

and by computing the square root of all terms (all non-negative) one gets√
λmin(MTM)||x|| ≤

√
xT (MTM)x ≤

√
λmax(MTM)||x||,

which can be immediately rewritten as (C.1).

To show that both conditions (C.2) hold, observe that by Proposition C.2 it holds

||Mvmin|| = σmin(M)||vmin|| e ||Mvmax|| = σmax(M)||vmax||

where vmin and vmax are the eigenvectors associated, respectively, to the smallest and largest
eigenvalues of MTM . □

According to the previous proposition the largest (resp., smallest) singular value represents the
maximal (resp., minimal) scalar gain. In particular, if σmax(M) < 1 then operator M is called
contractive, i.e., it holds ||Mx|| < ||x|| for all x ∈ Rn.

We point out that any non-null vector x ∈ Rn can be written as x = ku where k > 0 and u ∈ Rn

is the vector with norm 1 (on the unitary ball) along the same direction of x. It holds that

gM (ku) =
||M(ku)||
||(ku)|| =

k ||Mu||
k ||u|| =

||Mu||
||u|| = ||Mu|| = gM (u)

hence the scalar gain depends of the direction of a vector but not on its magnitude. For this reasons
the characterization of the largest and smallest singular values in eq. (C.2) can also be rewritten as
follows:

σmin(M) = min
x∈Rn

∥u∥=1

||Mu|| and σmax(M) = max
x∈Rn

∥u∥=1

||Mx||. (C.3)

A graphical representation of the scalar gains may also be given. Let us define in Rn the set of
points

GM = {gM (u)u | u ∈ Rn, ||u|| = 1}
obtained from the points on the unit ball by multiplication with the corresponding scalar gain.
Take an arbitrary point x in this set and consider its distance from the origin: its length denotes the
scalar gain associated to all vectors with the same direction of vector x. Thus the minimal (resp.,
maximal) distance from the origin of points in this set is equal to the minimal (resp., maximal)
singular value of matrix M .
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Figure C.3: Graphical rapresentation of the scalar gains for matrix M5 in Example C.7.

Example C.7 Consider again matrix

M5 =

 1 −0.8

1 0


previously studied in Example C.7 whose domain is R2. Set GM5 is shown in Fig. C.3 in blue,
while the unit circle is represented with a dotted line. The segments whose length are the singular
values σmin(M5) = 0.52 and σmax(M5) = 1.54 are shown in the figure. ⋄
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Stability of linear time-invariant
systems

In this appendix we briefly recall the notion of Lypunov stability for linear time-invariant dy-
namic systems. We then present two approaches widely used for stability analysis: the eigenvalue
criterion and Lyapunov direct method.

D.1 Equilibrium state

The dynamic evolution of an autonomous linear time-invariant system can be described by the
linear differential equation

ẋ(t) = Ax(t) (D.1)

where x(t) ∈ Rn is the state vector and A ∈ Rn×n is a matrix of constants.

The solution of this equation for t ≥ 0 starting from a given initial state x(0) is

x(t) = eAtx(0)

where matrix eAt, called state transition matrix, has dimension n × n. If matrix A has r distinct
eigenvalues λi each of index 1 πi (i = 1, . . . , r), we define modes of the system the functions of
time tkeλit for k = 0, 1, . . . , πi − 1. It can be shown that each element of the state transition
matrix is a linear combination of modes of the system.

Definition D.1 A state xe is an equilibrium state for system (D.1) if it is a solution of the linear
equation Axe = 0. ▲

Note that if xe is an equilibrium state, the following condition holds:

x(τ) = xe ⇒ (∀t ≥ τ) x(t) = xe.

1The index of an eigenvalue is the order of the largest block associated with it in the equivalent Jordan form. Note
that the index of an eigenvalue is always less than or equal to the multiplicity of eigenvalue, i.e., 1 ≤ πi ≤ νi where νi
is the multiplicity of eigenvalue λi.
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δ
εxe

x(0)

x(t)
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δ
εxe

x(0)x(t)

(b)

Figure D.1: Equilibrium state xe and corresponding evolutions. (a) State xe is stable. (b) State xe
is asymptotically stable.

i.e., every trajectory that starts from xe at time τ will remain in xe in all future instants. A linear
system has always an equilibrium state xe = 0 in the origin and this is the only one if matrix A is
non-singular. If A is singular, there exist an infinite number of equilibrium points: all vectors in
the null space of A.

Definition D.2 An equilibrium state xe is called stable if, for every ε > 0, there exists a δ(ε) > 0
such that if ||x(0)− xe|| ≤ δ(ε), then ||x(t)− xe|| < ε for every t ≥ 0. Otherwise xe is an
unstable equilibrium state.

In addition, a stable equilibrium state xe is called asymptotically stable if limt→∞ x(t) = xe. ▲

In plain words, if xe is a stable equilibrium point, given an arbitrary ball Bε of radius ε it is
possible to identify a ball Bδ of radius δ ≤ ε such that all evolutions that start inside Bδ remain
inside Bε. In addition, if xe is asymptotically stable, all these evolutions converge to xe. This is
shown in Fig. ??.

In the case of linear systems, if any equilibrium state is stable (resp., unstable) then all equilibrium
states are stable (resp., unstable): in such a case the linear system is called stable (resp., unstable).
In addition, if the system is asymptotically stable then there is only one equilibrium point xe = 0.

D.2 Stability and eigenvalues

The simplest criterion for stability analysis of system (D.1) is based on the eigenvalues of matrix
A.

Proposition D.1 (Eigenvalue criterion) Consider the linear time-invariant system ẋ(t) = Ax(t).
Such a system is:

• asymptotically stable if and only if all the eigenvalues of the matrix A have negative real
part, i.e., λ(M) ∈ C<0;

• stable if and only if all the eigenvalues of the matrix A have: either negative real part, or
null real part and unitary index.
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• unstable, in all other cases.

A matrix A whose eigenvalues have all negative real parts is called a stable matrix or Hurwitz
matrix: note that this implies that the corresponding system (D.1) is asymptotically stable.

D.3 Direct method of Lyapunov

Another criterion for determining the stability of an autonomous system (not necessarily linear)
is provided by the so called direct method of Lyapunov. We present this approach for the general
case of a nonlinear system.

Proposition D.2 (Direct method of Lyapunov) Consider an autonomous system described by
the differential equation

ẋ(t) = f(x(t))

where the vector of functions f(·) is continuous with its first partial derivatives ∂f/∂xi, for i =
1, · · · , n. Let xe be an equilibrium point for this system, i.e., f(xe) = 0.

Consider a scalar function V : Rn → R that is continuous and whose partial derivatives
∂V (x)/∂xi are also continuous for i = 1, . . . , n. If V (x) is positive definite in xe and such
that its time derivative

dV (x(t))

dt
=

∂V (x)

∂x
· dx
dt

=
∂V (x)

∂x
· f(x) = ∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 + · · ·+ ∂V

∂xn
ẋn

is semidefinite (resp., definite) negative in xe, then xe is a stable (resp., asymptotically stable)
equilibrium state. Such a function V (x) is called a Lyapunov function.

Note that while the eigenvalue criterion provides an effective algorithm for checking stability (one
simply needs to compute the eigenvalues of matrix A) the direct method of Lyapunov fails to do so
for two main reasons. First, it is not always clear how to choose the Lyapunov function. Secondly,
it only provides a sufficient condition for stability. As an example, if one chooses a function V (x)
whose time derivative does not satisfy the conditions of Proposition D.2, one cannot conclude that
the system is unstable because a different Lyapunov function may exist.

In the case of stable linear time-invariant systems, however, a Lyapunov function can be easily
determined.

Proposition D.3 Given a stable matrix A, consider an arbitrary symmetric matrix Q ≻ 0 and
compute the symmetric matrix P ≻ 0 solution of the Lyapunov equation 2

ATP + PA = −Q. (D.2)

Then the quadratic form V (x) = xTPx is a Lyapunov function for the system ẋ(t) = Ax(t).

2In equation (D.2) matrices A and Q are known, while matrix P is the unknown to be determined.
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Proof. First we observe that since P ≻ 0 function V (x) is positive definite in 0. Furthermore, we
calculate its time derivative. It holds

dV (x)

dt
=

d

dt
xT (t)Px(t) = ẋT (t)Px(t) + xT (t)Pẋ(t) = xT (t)ATPx(t) + xT (t)PAx(t)

= xT (t)
(
ATP + PA

)
x(t) = −xT (t)Qx(t)

and this is a negative definite quadratic form, because Q ≻ 0. □

The following result ensures the existence of a solution to the Lyapunov equation if matrix A is
stable.

Proposition D.4 Given a stable matrix A of order n and a symmetric matrix Q ≻ 0 of order
n, there exists one and only one symmetric matrix P ≻ 0 of order n that satisfies the Lyapunov
equation

ATP + PA = −Q.

The matrix P can be determined, for example, using the Matlab command: P = lyap(A’,
Q).

On the basis of the previous discussion we can also state the following result.

Corollary D.1 A linear time-invariant system is stable if and only if it is quadratically stable, i.e.,
there exists a Lyapunov function described by a quadratic form.
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