Analysis and Control of Cyber-Physical Systems

Homework 6 — 23 May 2024

Problem 1. Consider the hybrid automaton *H* shown below.

$$\ell$$

$$\dot{x}_1 := 0, \ x_2 := 8$$

$$\dot{x}_2 = -1$$

$$\{x_1 \le 8\}$$

$$x_1 := x_2, \ x_2 := 8$$

- (a) Determine the time-abstract state transition system T that describes H.
- (b) Discuss if it is possible to compute the reachability set Reach(T) using the procedure discussed in class.

Problem 2. Consider the state transition systems T_1 and T_2 described by the automata in figure.

- (a) Are T_1 and T_2 language equivalent?
- (b) Discuss if each system simulates the other one, providing a simulation relation between their states.
- (c) If the two systems are not bisimilar, discuss if one could change T_2 by either adding a new transition or changing one state from final to non-final or viceversa to make them bisimilar.

Problem 3. Consider the state transition system T described by the automaton in figure.

- (a) Compute the set $Pre_b(\{x_0, x_1\})$.
- (b) Consider the following partition: $\Pi = \{\pi_1, \pi_2, \pi_3\}$ with $\pi_1 = \{x_0\}, \pi_2 = \{x_1, x_2\}$ and $\pi_3 = \{x_3, x_4\}$. Is the corresponding equivalence relation a bisimulation over the states of T? Justify your answer.
- (c) Determine a minimal bisimulation over the states of T and the corresponding quotient state transition system, showing the steps of the procedure you have used.