
Analysis and Control of Cyber-Physical Systems

Homework 5 — 2 May 2024

Problem 1. Consider a (non-switched) spring-mass-damper system whose state equation is:

ẋ =
[
ẋ1
ẋ2

]
=

[
0 1

−k/m −b/m

] [
x1
x2

]
= Ax

where x1 is the position of the mass (x1 = 0 is the equilibrium position), x2 is the velocity of the mass, k > 0 is the
spring constant, b > 0 is the friction constant of the damper.

(a) The total energy of the system is E = Ep+Ek where the potential energy (stored in the spring) is Ep = 1/2 ·kx21
and the kinetic energy is Ek = 1/2 ·mx22. Verify that E is a Lyapunov function satisfying:

(1) E(0) = 0; (2) E(x) > 0 for all x 6= 0; (3)
d

dt
E(x(t)) ≤ 0 for all x 6= 0.

Note that the last condition of the Lyapunov function E is slightly different from the ones we discussed in class:
d/dt E(x(t)) = 0 for some x 6= 0. In fact, d/dt E(x(t)) = 0 for the line x2 = 0. However, since the system
cannot stay on the line x2 = 0 with x1 6= 0, the energy will be continuously decreasing so that system is indeed
asymptotically stable.

(b) Assume m = k = b = 1. Determine a Lyapunov function V (x) = xTPx by solving the Lyapunov equation:
ATP + PA = −Q where Q is an arbitrary positive-definite matrix you choose. If you solve the Lyapunov
equation manually, you may choose Q = I .
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Figure 1: A spring-mass-damper system.

Problem 2. Consider a switched system H = {A1, A2} with

A1 =
[ −1 −1

1 −1
]
, A2 =

[
0 1

−0.5 −5
]

(a) Simulate the evolution of each mode i = 1, 2 and see if each mode is stable.

(b) Plot1 σmax(e
Ait) versus t for each mode i = 1, 2. Determine by the plots if the system H is stable under arbitrary

switching law `(t).

1Here σmax(M) is the maximal singular value of matrix M .



Problem 3. Consider a linear switched system H = {A1, . . . , An} in which all matrices Ai are stable and normal,
i.e., AT

i Ai = AiA
T
i . Prove that such a system is stable under arbitrary switching law `(t). To prove this you should

find a suitable positive-definite matrix P such that V (x) = xTPx is a common quadratic Lyapunov function for all
Ai’s.

(a) [Hint] There is a Lemma for normal matrices. “If a continuous-time system ẋ = Ax is normal and stable, then
AT +A ≺ 0, i.e., Z = AT +A is negative-definite.”

(b) If you find the problem difficult, try n = 2, i.e., H = {A1, A2}.

Problem 4. Consider an LSS that consists of two unstable modes:

A1 =
[
15 −6
25 −6

]
A2 =

[ −8 −5
−5 2

]
.

1. Show that the system is quadratically stabilizable finding a stable linear combination of matricesA1, A2. Design
the corresponding state feedback switching law `(x(t)) that stabilizes the system.

2. Draw the regions of the state space where each mode is active according to `. Show the system evolution for
two different initial conditions (chattering is allowed).

Problem 5. Consider an LSS that consists of two stable modes:

A1 =
[ −1 −10
1.5 −1

]
A2 =

[
0 5
−1 −0.5

]
.

1. Determine a minimal dwell time τd using singular value analysis such that the system is stable for any switching
law `(t) that satisfies the minimal dwell time.

2. Determine a minimal dwell time τ ′d using multiple Lyapunov functions (solve Lyapunov functions for P1, P2,
compute their eigenvalues, etc.). Compare the rate of convergence of two switching laws `(t) and `′(t) that
satisfy the dwell time τd and τ ′d above, respectively.

* Use MATLAB to determine the stability of a matrix and to solve the Lyapunov equations.


