Analysis and Control of Cyber-Physical Systems

Homework 5 — 2 May 2024

Problem 1. Consider a (non-switched) spring-mass-damper system whose state equation is:
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where x; is the position of the mass (z1 = 0 is the equilibrium position), x5 is the velocity of the mass, £ > 0 is the
spring constant, b > 0 is the friction constant of the damper.

(a) The total energy of the system is E' = E,, + Ej, where the potential energy (stored in the spring) is £, = 1/2- ka?
and the kinetic energy is Ey, = 1/2 - ma3. Verify that E is a Lyapunov function satisfying:

(1) E(0)=0;  (2) E(x)>0forallz £0;  (3) % E(x(t)) < 0 forall z £ 0.

Note that the last condition of the Lyapunov function F is slightly different from the ones we discussed in class:
d/dt E(x(t)) = 0 for some = # 0. In fact, d/dt E(z(t)) = O for the line x5 = 0. However, since the system

cannot stay on the line o = 0 with z; # 0, the energy will be continuously decreasing so that system is indeed
asymptotically stable.

(b) Assume m = k = b = 1. Determine a Lyapunov function V(z) = 27 Pz by solving the Lyapunov equation:
ATP + PA = —(@Q where @ is an arbitrary positive-definite matrix you choose. If you solve the Lyapunov
equation manually, you may choose () = I.
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Figure 1: A spring-mass-damper system.

Problem 2. Consider a switched system H = {A;, Ay} with

a=[T O] =[5 5]

(a) Simulate the evolution of each mode 7 = 1, 2 and see if each mode is stable.

(b) Plot! oyax(e?it) versus t for each mode i = 1, 2. Determine by the plots if the system H is stable under arbitrary
switching law £(t).

"Here 0'max (M) is the maximal singular value of matrix M.



Problem 3. Consider a linear switched system H = {A;,..., A,} in which all matrices A; are stable and normal,
ie., AT A; = A;AT. Prove that such a system is stable under arbitrary switching law £(¢). To prove this you should
find a suitable positive-definite matrix P such that V(z) = 27 Pz is a common quadratic Lyapunov function for all

Ai’S.

(a) [Hint] There is a Lemma for normal matrices. “If a continuous-time system & = Az is normal and stable, then
AT + A <0,ie., Z = AT + A is negative-definite.”

(b) If you find the problem difficult, try n = 2, i.e., H = {A;, Aa}.

Problem 4. Consider an LSS that consists of two unstable modes:

m=lo 5] =[5 3]

1. Show that the system is quadratically stabilizable finding a stable linear combination of matrices A1, A. Design
the corresponding state feedback switching law ¢(x(¢)) that stabilizes the system.

2. Draw the regions of the state space where each mode is active according to £. Show the system evolution for
two different initial conditions (chattering is allowed).

Problem 5. Consider an LSS that consists of two stable modes:

a=[ ] =0 3]

1. Determine a minimal dwell time 7,4 using singular value analysis such that the system is stable for any switching
law £(t) that satisfies the minimal dwell time.

2. Determine a minimal dwell time 7, using multiple Lyapunov functions (solve Lyapunov functions for P, P,
compute their eigenvalues, etc.). Compare the rate of convergence of two switching laws £(t) and ¢'(t) that
satisfy the dwell time 74 and 7/, above, respectively.

* Use MATLAB to determine the stability of a matrix and to solve the Lyapunov equations.



