Analysis and Control of Cyber-Physical Systems

Homework 4 — 22 April 2024

Problem 1. Consider the hybrid control system for the stabilization of the inverted pendulum, as shown in the figure. The total energy of the system is $E = \frac{1}{2}\omega^2 + (\cos \theta - 1)$.

- (a) Model this system as a hybrid automaton explicitly writing its algebraic representation.
- (b) Is this system autonomous? Is this system deterministic? If it not deterministic, suitably modify the invariants to make it deterministic.
- (c) What are admissible values of parameter δ ? Choose one such value.
- (d) What are admissible values of parameter ε ? Choose one such value.
- (e) Assuming a state $x(t) = (\theta(t), \omega(t))$, simulate the evolution of this system from the following different initial conditions: $x_{0,a} = (0, 2), x_{0,b} = (2, 0)$.
- (f) Print the following plots: the state space trajectory in the (x_1, x_2) subspace, the evolution of all components of the continuous state and of the continuous input in time, the evolution of the discrete state in time.
- (g) Show that the proposed control scheme cannot stabilize the pendulum starting from from initial condition $\theta(0) = \pi, \omega(0) = 0$. Modify the automaton to also handle this case and show a simulation of its evolution.

Problem 2. Modify the model of the bouncing ball assuming that when the ball reaches the ground the change of velocity $v = -\alpha v^-$ occurs linearly in a fixed time Δ .

- (a) Model this system as an autonomous hybrid automaton. You should give both the algebraic and graphical representation of the automaton.
- (b) Discuss if this system is zeno.
- (c) Simulate the evolution of this system from the initial condition $(h_0, 0)$ with $h_0 = 1$ m assuming $\alpha = 0.8$ and $\Delta = 0.1$ s. Describe this evolution during the first four bounces by means of a hybrid temporal trajectory and hybrid signals.
- (d) Print the following plots: the state space trajectory, the evolution of all components of the continuous state in time, the evolution of the discrete state in time.