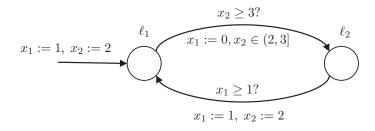

Analysis and Control of Cyber-Physical Systems


Final exam — 1 June 2023

Problem 1. [21 pts] Consider the hybrid automaton H shown below.

- (a) (3 pts) Determine its algebraic structure and discuss if it belongs to a known subclass of hybrid automata.
- (b) (3 pts) Write a Modelica program to simulate the evolution of the automaton.
- (c) (4 pts) Determine (by hand) the evolution of the automaton during the time interval $t \in [0, 7]$. Describe this evolution as hybrid signal, and plot the state variables over time and also the trajectory in the state space.
- (d) (3 pts) Show that the automaton is zeno and compute the time T_{zeno} .
- (e) (3 pts) Determine a zeno-free hybrid automaton H' obtained from H by time-regularization, assuming a dwell time $\delta = 0.1$.
- (f) (3 pts) Determine the time-abstract state transition system T that describes H.
- (g) (2 pts) Discuss if it is possible to compute the reachability set Reach(T) using the procedure discussed in class. Could one convert H into an equivalent timed automata and study reachability using a finite quotient automaton?

Problem 2. [9 pts] Consider the timed automaton whose graphical representation is shown below.

- (a) (3 pts) Determine its regions in the continuous state space.
- (b) (3 pts) Construct the region automaton starting from the initial condition.
- (c) (3 pts) Based on the region automaton, what can be said about the reachability of the following states?

 - i) $(\ell_1, (1, 2.5));$ ii) $(\ell_2, (0.5, 2.6));$ iii) $(\ell_1, (2, 3.5)).$